Answer:
1. Orbital diagram
2p⁴ ║ ↑↓ ║ "↑" ║ ↑
2s² ║ ↑↓ ║
1s² ║ ↑↓ ║
2. Quantum numbers
- <em>n </em>= 2,
- <em>l</em> = 1,
= 0,
= +1/2
Explanation:
The fill in rule is:
- Follow shell number: from the inner most shell to the outer most shell, our case from shell 1 to 2
- Follow the The Aufbau principle, 1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p
- Hunds' rule: Every orbital in a sublevel is singly occupied before any orbital is doubly occupied. All of the electrons in singly occupied orbitals have the same spin (to maximize total spin).
So, the orbital diagram of given element is as below and the sixth electron is marked between " "
2p⁴ ║ ↑↓ ║ "↑" ║ ↑
2s² ║ ↑↓ ║
1s² ║ ↑↓ ║
The quantum number of an electron consists of four number:
- <em>n </em>(shell number, - 1, 2, 3...)
- <em>l</em> (subshell number or orbital number, 0 - orbital <em>s</em>, 1 - orbital <em>p</em>, 2 - orbital <em>d...</em>)
(orbital energy, or "which box the electron is in"). For example, orbital <em>p </em>(<em>l</em> = 1) has 3 "boxes", it was number from -1, 0, 1. Orbital <em>d</em> (<em>l </em>= 2) has 5 "boxes", numbered -2, -1, 0, 1, 2
(spin of electron), either -1/2 or +1/2
In our case, the electron marked with " " has quantum number
- <em>n </em>= 2, shell number 2,
- <em>l</em> = 1, subshell or orbital <em>p,</em>
= 0, 2nd "box" in the range -1, 0, 1
= +1/2, single electron always has +1/2
Answer:
The collision of oceanic plates and any other plates in which the oceanic plate slides beneath the other plate creates the biggest earth quakes. Most of these earth quakes occur beneath the sea or oceans and can cause volcanic eruptions as well. Tsunami is another oceanic event that occurs due to earth quakes occurring due to shifting of plates beneath the sea.
Answer:
well for me it's
Explanation:
The reflection of the seas
This equation represents a single replacement reaction. Single replacement reactions consist of one element reacting with one compound on the reactant side (left side of the equation) and they form one new element and one new compound on the product side of the equation (right side).
The number of electrons that can be held in the second orbit are 8