Answer:
10 molecules of NH₃.
Explanation:
N₂ + 3H₂ --> 2NH₃
As the N₂ supply is unlimited, what we need to do to solve this problem is <u>convert molecules of H₂ into molecules of NH₃</u>. To do so we use the <em>stoichiometric coefficients</em> of the balanced reaction:
- 15 molecules H₂ *
= 10 molecules NH₃
10 NH₃ molecules could be prepared from 15 molecules of H₂ and unlimited N₂.
Answer:
THE EMPIRICAL FORMULA OF THE SUBSTANCE IS C2H5NO
Explanation:
The steps involved in calculating the empirical formula of this substance in shown in the table below:
Element Carbon Hydrogen Nitrogen Oxygen
1. % Composition 40.66 8.53 23.72 27.09
2. Mole ratio =
%mass/ atomic mass 40.66/12 8.53/1 23.72/14 27.09/16
= 3.3883 8.53 1,6943 1.6931
3. Divide by smallest
value (0.6931) 3.3883/1.6931 8.53/1.6931 1.6943/1.6931 1.6931/1.6931
= 2.001 5.038 1.0007 1
4. Whole number ratio 2 5 1 1
The empirical formula = C2H5NO
Conversion of mole to grams
k in mole = 1 mole/ atomic mass
K in mole =1/ 39.0983 g/mole
= 0.255765 g/mole
converting 40 grams of K
K 40 grams x [ 1 mole/ 39.0983 grams] = 1.0230623 mole
There are 1.0230623 moles of K in 40 K of Potassium
More vegetables, more fruits, easier to use.