Answer: The correct option is (c.).
Explanation:
Mass of the cart A= 1.5 kg
Velocity of Cart A = 1.4 m/s towards right
Mass of the cart B = 1.0 kg
Velocity of Cart B = 1.4 m/s towards left
Momentum (P)= Mass × Velocity

(Negative sign means velocity of the cart is in opposite direction of that of the cart A)
Total Momentum =
Hence, the correct option is (c.).
Answer:
Because the light reflects multiple times until it gets to the Cassegrain focus.
Explanation:
The Cassegrain design can be seen in a reflecting telescope. In this type of design the light is collected by a concave mirror, and then intercepted by a secondary convex mirror, and sends it down to a central opening in the primary mirror (concave mirror), in which a detector is placed (Cassegrain focus)
Since, the light is reflected many times due to Cassegrain design, that leads to shorter telescopes.
Answer:
20 metres
Explanation:
<em>Speed</em><em> </em><em>=</em><em> </em><em>distance</em><em> </em><em>÷</em><em> </em><em>time</em>
<em> </em>
<em>
</em>
If we substitute the values:

<em>
</em>
The magnitude of work done by the gas is 279 J and the sign is negative so W = -279 J as work is done by the system.
<u>Explanation:</u>
According to first law of thermodynamics, the change in internal energy of the system is equal to the sum of the heat energy added or released from the system with the work done on or by the system. If the heat energy is added to the system to perform a certain work, then the heat energy is taken as positive, while it will be negative when the heat energy is released from the system.
Similarly, in this case, the heat energy of 597 J is added to the system. So the heat energy will be positive, while the gas expansion occurs means work is done by the system.
ΔU = Q+W
Since ΔU is the change in internal energy which is given as 318 J and the heat energy added to the system is Q = 597 J.
Then the work done by the gas = ΔU - Q = 318 J - 597 J = - 279 J.
As the work is done by the system, so it will be denoted in negative sign and the magnitude of work done by the gas is 279 J.