We know that
Distance = speed x time
Let w be the time Brad spent walking. The time spent jogging will be 1 - w
6 = 5w + 9(1 - w)
w = 0.75 hours
Distance walked = 0.75 x 5
= 3.75 km
1) the weight of an object at Earth's surface is given by

, where m is the mass of the object and

is the gravitational acceleration at Earth's surface. The book in this problem has a mass of m=2.2 kg, therefore its weight is

2) On Mars, the value of the gravitational acceleration is different:

. The formula to calculate the weight of the object on Mars is still the same, but we have to use this value of g instead of the one on Earth:

3) The weight of the textbook on Venus is F=19.6 N. We already know its mass (m=2.2 kg), therefore by re-arranging the usual equation F=mg, we can find the value of the gravitational acceleration g on Venus:

4) The mass of the pair of running shoes is m=0.5 kg. Their weight is F=11.55 N, therefore we can find the value of the gravitational acceleration g on Jupiter by re-arranging the usual equation F=mg:

5) The weight of the pair of shoes of m=0.5 kg on Pluto is F=0.3 N. As in the previous step, we can calculate the strength of the gravity g on Pluto as

<span>6) On Earth, the gravity acceleration is </span>

<span>. The mass of the pair of shoes is m=0.5 kg, therefore their weight on Earth is
</span>

<span>
</span>
Answer:
false
Explanation:
It doesn't the copper wire wouldn't even be pulled by the magnet at all and the electricity would stay inside of the the force of the copper wire
Answer:
The possible thickness of the soap bubble = 
Explanation:
<u>Given:</u>
- Refractive index of the soap bubble,

- Wavelength of the light taken,

Let the thickness of the soap bubble be
.
It is given that the soap bubble appears very bright, it means, there is a constructive interference takes place.
For the constructive interference of light through a thin film ( soap bubble), the condition of constructive interference is given as:

where
is the order of constructive interference.
Since the soap bubble is appearing very bright, the order should be 0, as
order interference has maximum intensity.
Thus,

It is the possible thickness of the soap bubble.