1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
S_A_V [24]
3 years ago
11

The energy content of food is conventionally measured in Calories rather than joules. One Calorie in nutrition is equal to 4184

J. Metabolizing 1 g of fat can release 9.00 Calories. A 75.7 kg student decides to try to lose weight by exercising. He plans to run up and down the stairs in a football stadium as fast as he can and as many times as necessary. To evaluate the program, suppose he runs up a flight of 100 steps, each 0.150 m high, in 59.9 s. For simplicity, ignore the energy he uses in coming down (which is small). Part a (1 points) What is his average power output, in watts, as he runs up the stairs? Note that the power output is the rate of mechanical work generated, not the rate at which energy is consumed. Please enter a numerical answer below. Accepted formats are numbers or "e" based scientific notation e.g. 0.23,-2, 1e6, 5.23e-8 Enter answer here W CHECK ANSWER 0 of 4 attempts used (1 points) Part b A typical efficiency for human muscles is 20.0%. For instance, when your body metabolizes 100 J of chemical energy it converts this into 20 J of mechanical work (here, climbing stairs), while the remainder is lost to thermal energy. Assuming all the energy consumed during exercise comes from burning fat, how many times must he run up the flight of stairs to burn 1.00 kg of fat? [for simplicity assume his total mass remains constant during this process] Please enter a numerical answer below. Accepted formats are numbers or "e" based scientific notation e.g. 0.23, -2, 1e6, 5.23e-8 flights of Enter answer here stairs CHECK 0 of 4 attempts used ANSWER
Physics
1 answer:
Rama09 [41]3 years ago
5 0

Answer:

Part a)

P = 186 W

Part B)

N = 676 times

Explanation:

Part a)

Average power is rate of energy consumption

So it is given as

P = \frac{mgh}{t}

P = \frac{100(75.7)(9.81)(0.150)}{59.9}

P = 186 W

Part b)

If the efficiency is given as

\eta = 20%

so we know that 20% of total energy consumed is converted into output work

So total power consumed here will be given as

P = \frac{186}{0.20}

P = 930 W

Energy consumed by him

E = power \times time

E = 930 \times 59.9

E = 55707 J

now we know that 1 g fat will release 9 Calories energy

So we have

1 g = 9 \times 4184 J

1 g = 37656 J

so to consume 1000 g of fat we need to release  total energy

E = 37656 \times 10^3 J

so total number of times

N = \frac{37656 \times 10^3}{55707}

N = 676 times

You might be interested in
suppose you got up this morning and the lightbulb in your room wouldn't come on. Use the of the scientific method to explain how
Anna007 [38]

Answer:TEP 1: State the Problem

A problem is a question to be thought about and either solved or answered. Problems surround all of us. Each day we are faced with more problems than we realize and we use the scientific method to solve them without even thinking about it.

EXAMPLE: The lamp does not come on when you flip the switch.

Your problem may be something that you observe around you or it can be determined by researching a topic and attempting to repeat an experiment of another scientist based on what you are working with.

STEP 2: Make Observations

An observation is the act of recognizing and recording something that is happening. Observing often involves the use of measurements and instruments to take measurements with.

EXAMPLE: (1) There is a light bulb. (2) The switch is in the on position.

(3)Other lights in the house are on. (4) The electrical cord is plugged in.

You make these observations based on the things you see, hear, and in other ways notice going on around you. You may also base your observations on information you found from researching the topic. Maybe you found the manual for the lamp and read about how it is supposed to work. You might have searched for information about Thomas Edison and his invention of the light bulb. These works of others are called background research.

 

STEP 3: Form a Hypothesis

A hypothesis is an educated guess meaning an explanation for something that happens based on facts that can then be tested to try and find logical answers.

EXAMPLE: The light bulb is burned out.

Your hypothesis should answer your question of why the lamp does not come on. You can come to this conclusion based on your own knowledge or from researching how a lamp works. We assume that if the lamp is plugged in and turned on that it should light. We also know that if other lights in the house are on, some electricity is running through the house. Your hypothesis does not have to be proven correct by your experiment, it just needs to be testable.

Having more than one hypothesis is fine. There could be a number of reasons why the lamp is not lit and testing them all might be the only way to find an answer. Before beginning to experiment, use logical reason to determine if any of your hypotheses can be eliminated. Maybe the fuse is blown or the outlet is bad. The switch could be wired wrong or broken. These are all testable hypotheses that could be looked into if the light bulb is not the problem.

 

STEP 4: Experiment

An experiment is a step-by-step procedure that is carried out under controlled conditions to attempt to prove a hypothesis, discover and unknown effect or law, or to illustrate a known law.

EXAMPLE: First remove the light bulb and screw it back in tightly to make sure that it was not loose. If that does not work, take the bulb from a lamp you know is working and place it in the broken lamp. If that lights, try another bulb to be sure.

Your experimental set-up should include a control and a variable. You may include more than one variable, but this will increase the size of your experiment. It is also very important to replicate in your experimetal procedure to avoid error. This means that you should try it at least three times. From your experiment you will need to gather data. Data can be organized in charts and or graphs and numerical data should be measured using the metric system.

The Metric System

How To Organize a Data Table

How To Graph

 

STEP 5: Draw a Conclusion

A conclusion is a reasonable judgment based on the examination of data from an experiment. The result or outcome of an act or process.

EXAMPLE: The lamp lit after the bulb was changed, therefore the light bulb must have been burned out.

You might also know from experience that if the filament is broken in a light bulb, it will make a rattling sound when you shake the bulb. To confirm your results, you could shake the bul

Explanation:

5 0
2 years ago
Please need help fast
iVinArrow [24]

(a) See graph in attachment

The appropriate graph to draw in this part is a graph of velocity vs time.

In this problem, we have a horse that accelerates from 0 m/s to 15 m/s in 10 s.

Assuming the acceleration of the horse is uniform, it means that the velocity (y-coordinate of the graph) must increase linearly with the time: therefore, the velocity-time graph will appear as a straight line, having the final point at

t = 10 s

v = 15 m/s

(b) 1.5 m/s^2

The average acceleration of the horse can be calculated as:

a=\frac{v-u}{t}

where

v is the final velocity

u is the initial velocity

t is the time interval

In this problem,

u = 0

v = 15 m/s

t = 10 s

Substituting,

a=\frac{15-0}{10}=1.5 m/s^2

(c) 75 m

For a uniformly accelerated motion, the distance travelled can be calculated by using the suvat equation:

s=ut+\frac{1}{2}at^2

where

s is the distance travelled

u is the initial velocity

t is the time interval

a is the acceleration

In this problem,

u = 0

t = 10 s

a=1.5 m/s^2

Substituting,

s=0+\frac{1}{2}(1.5)(10)^2=75 m

(d) See attached graphs

In a uniformly accelerated motion:

- The distance travelled (x) follows the equation mentioned in part c,

x=ut+\frac{1}{2}at^2

So, we see that this has the form of a parabola: therefore, the graph x vs t will represents a parabola.

- The acceleration is constant during the motion, and its value is

a=1.5 m/s^2 (calculated in part b)

therefore, the graph acceleration vs time will show a flat line at a constant value of 1.5 m/s^2.

6 0
3 years ago
Please help <br>Newton second law of motion is F =ma <br>​
mamaluj [8]

Answer: ma is the formula of Newton's Second Law of Motion. Newton's Second Law of Motion is defined as Force is equal to the rate of change of momentum. For a constant mass, force equals mass times acceleration.

Explanation: Newton's second law of motion is F = ma, or force is equal to mass times acceleration.

6 0
2 years ago
Read 2 more answers
.
beks73 [17]

Answer:

2 m/s²

Explanation:

the equations of motion are

S= ut +½at²

v² = u²+ 2as

v = u + at

s = (u+v)/2 × t

From the parameters given

u = 0m/s this is because it starts from rest

Distance (s)  = 9m

Time (t)  = 3s

Based on this the first equation would be used

s = ut + ½at²

Input values

9 = 0×3 + ½ × a x 3²

9 = 0 + 9a/2

9 = 4.5a

Divide both sides by 4.5

a = 9 / 4.5 m/s²

a = 2 m/s²

I hope this was helpful, please mark as brainliest

3 0
3 years ago
What are two ways thermal energy can be increased in a system?
MaRussiya [10]
Adding thermal energy
Performing work on the system
3 0
3 years ago
Other questions:
  • Elena (60.0 kg) and Madison (65.0 kg) are ice-skating at the Rockefeller ice rink in New Yok city. Their friend Tanner sees Elen
    7·1 answer
  • A tugboat tows a ship with a constant force of magnitude F1. The increase in the ship's speed during a 10 s interval is 3.0 km/h
    9·1 answer
  • Sawyer launches his 180 kg raft on the Mississippi River by pushing on it with a force of 75N. How long must Sawyer push on the
    13·1 answer
  • A weightlifter lifts a set of weights a vertical distance of 2.00m.If a constant net force of 350 N is exerted on the weights,wh
    14·1 answer
  • 804 n of force are applied to a 51.7 kg. What is the acceleration that the object experiences?
    15·1 answer
  • What type of solar radiation does not reach the surface of the earth?
    6·1 answer
  • A 0.035 kg shooter marble with a velocity of 0.77 m/s. forward, hits a 5.2 x 10-³ kg marble that is at rest. The
    9·1 answer
  • SOS HELP ME
    12·1 answer
  • Un diapasón vibra a 140 [Hz] y la onda emitida por él se propaga con una rapidez de 340 m/s.Considerando lo anterior, se puede a
    13·1 answer
  • Two balls of equal mass collide and stick together as shown in the figure. The initial velocity of ball B is twice that of ball
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!