The average atomic mass: 40.078 u
electron configuration is the long list underneath the name "calcium" on the element. it starts with 1s^2s^2
"The forces of attraction and the volume of the molecules" (as opposed to the volume of the container the gas is in).
The number of atoms : N = 2.709 x 10⁴⁶
<h3>Further explanation</h3>
Given
4.5 x 10²² moles of CO₂
Required
The number of atoms
Solution
The mole is the number of particles(molecules, atoms, ions) contained in a substance
1 mol = 6.02.10²³ particles
Can be formulated
N=n x No
N = number of particles
n = mol
No = Avogadro's = 6.02.10²³
Input the value :
N = 4.5 x 10²² x 6.02 x 10²³
N = 2.709 x 10⁴⁶
The answer to your question is Hubble’s law
Answer:
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
Explanation:
Step 1: Given data
The supercritical CO2 has a density of 0.469 g/cm³ (or 0.469 g/mL)
The sample hasa volume of 25.0 mL
Step 2: Calculating mass of the sample
The density is the mass per amount of volume
0.469g/cm³ = 0.469g/ml
The mass for a sample of 25.0 mL = 0.469g/mL * 25.0 mL = 11.725g ≈ 11.7g
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g