1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mama L [17]
3 years ago
6

Which of the graphs above is the graph of the equation below? Y=x^3-6x^2+11x-6=(x-3)(x-2)(x-1)

Mathematics
1 answer:
____ [38]3 years ago
7 0

Answer:

answer Z

Step-by-step explanation:

Look for a graph that contains the following zeros: x = 1, x = 2 , x= 3, following the info derived by the binomial factors that the function contains. Also look ate the fact that the function in question has for leading term positive x^3 , then this function must go towards plus infinity when x becomes large. This is the case for the graph option Z (the last graph of the group)

You might be interested in
• The shortest side of a triangle is 8 centimeters long. The longest side is 8 cm longer than the
gizmo_the_mogwai [7]
The shortest side is 9, longest is 17 of the triangle IS NOT a 90 degree triangle
5 0
3 years ago
A manufacturer of new light bulbs claims the average lifetime of its long-life bulb is more than 4000 hours. To test this claim,
natka813 [3]

Answer: C. 12.5

Step-by-step explanation:

Given : A manufacturer of new light bulbs claims the average lifetime of its long-life bulb is more than 4000 hours.

Population mean :  \mu=4000

Sample size : n= 100

Sample mean : \overline[x}=4500

Standard deviation: s=400

The value of test-statistic is given by :-

z=\dfrac{\overline{x}-\mu}{\dfrac{s}{\sqrt{n}}}\\\\\Rightarrow\ z=\dfrac{4500-4000}{\dfrac{400}{\sqrt{100}}}\\\\\Rightarrow\ z= 12.5

Hence, the value of the test statistic for this problem is 12.5.

5 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
6 lb 4 oz − 5 lb 10 oz =
FinnZ [79.3K]
The answer to your problem is 10 oz
5 0
3 years ago
Read 2 more answers
Three wires are 6.5 m, 8.19 m, and 4.457 m long. What is the total length of the wires? Give your answer with the appropriate pr
LenaWriter [7]
The answer for the problem above is 19.147 meters is the total length of the wires.
6 0
3 years ago
Read 2 more answers
Other questions:
  • P x 1/3 = 6<br> what is p?<br> 2<br> 3<br> 9<br> 18
    5·2 answers
  • How do I solve?<br> 5 sin 4x = −10 sin 2x
    8·2 answers
  • Solve the absolute value equation. |4x+3|=3<br> sos
    9·1 answer
  • What expression is equivalent to -19 -11
    7·1 answer
  • What is the value of (x + 4)(x – 5) when x = 5?<br><br> A. 20<br><br> B. 4<br><br> C. 0<br><br> D. 1
    13·1 answer
  • I need answers about those mathematic problem
    5·1 answer
  • Which quantity is best expressed as +5?
    5·1 answer
  • Ection 1
    7·1 answer
  • PLEASE ANSWER ASAP !!!!!!
    12·1 answer
  • draw a number line and label points F G H and J with the coordinates -4 2/3, 2, 5, and 3.5 respectively.one of these point is th
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!