1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luden [163]
3 years ago
12

Somebody please help me!! Timed test

Physics
1 answer:
Olegator [25]3 years ago
3 0

Answer: i dont know sorry

Explanation:

You might be interested in
Contrary to popular belief, a ski jumper does not achieve a large amount of "air" when doing a jump (less than 6 feet). This is
Elina [12.6K]

Answer:

The vertical distance that the ski jumper fell is 417.45 m.

Explanation:

Given;

initial horizontal velocity of the jumper, V_x = 26 m/s

horizontal distance of the jumper, dx = 240 m

The time of the motion is given by;

dx = Vₓt

t = dx / Vₓ

t = 240 / 26

t = 9.23 s

The vertical distance traveled by the diver is given by;

d_y = V_yt + \frac{1}{2}gt^2

initial vertical velocity, V_y, = 0

d_y =  \frac{1}{2}gt^2\\\\d_y = \frac{1}{2}(9.8)(9.23)^2\\\\d_y = 417.45 \ m

Therefore, the vertical distance that the ski jumper fell is 417.45 m.

6 0
3 years ago
Hans Langseth's beard measured 5.33 m in 1927. Consider two charges, q1 = 2.42 nC and an unspecified charge, q2, are separated 5
schepotkina [342]

Answer:

-7.89 * 10^(-9) C

Explanation:

Parameters given:

q1 = 2.42 nC = 2.42 * 10^(-9) C

Distance between q1 and q2 = 5.33 m

q3 = 1.0 nC = 1 * 10^(-9) C

Distance between q1 and q3 = 1.9 m

Distance between q2 and q3 = 5.33 - 1.9 = 3.43 m

The net force acting on q3 is:

F = F(q1, q3) + F(q2, q3)

F = (k*q1*q3)/1.9² + (k*q2*q3)/3.43²

F = (9 * 10^(9) * 2.42 * 10^(-9) * 1 * 10^(-9))/3.61 + (9 * 10^(9) * q2 * 1 * 10^(-9))/11.7649

F = 6.033 * 10^(-9) + 0.765*q2

If the net force is zero:

0 = 6.033 * 10^(-9) + 0.765*q2

-0.765*q2 = 6.033 * 10^(-9)

=> q2 = -[6.033 * 10^(-9)]/0.765

q2 = -7.89 * 10^(-9) C

3 0
3 years ago
A 0.500-kg glider, attached to the end of an ideal spring with force constant undergoes shm with an amplitude of 0.040 m. comput
Nikitich [7]
There is a missing data in the text of the problem (found on internet):
"with force constant<span> k=</span>450N/<span>m"

a) the maximum speed of the glider

The total mechanical energy of the mass-spring system is constant, and it is given by the sum of the potential and kinetic energy:
</span>E=U+K=  \frac{1}{2}kx^2 + \frac{1}{2} mv^2
<span>where
k is the spring constant
x is the displacement of the glider with respect to the spring equilibrium position
m is the glider mass
v is the speed of the glider at position x

When the glider crosses the equilibrium position, x=0 and the potential energy is zero, so the mechanical energy is just kinetic energy and the speed of the glider is maximum:
</span>E=K_{max} =  \frac{1}{2}mv_{max}^2
<span>Vice-versa, when the glider is at maximum displacement (x=A, where A is the amplitude of the motion), its speed is zero (v=0), therefore the kinetic energy is zero and the mechanical energy is just potential energy:
</span>E=U_{max}= \frac{1}{2}k A^2
<span>
Since the mechanical energy must be conserved, we can write
</span>\frac{1}{2}mv_{max}^2 =  \frac{1}{2}kA^2
<span>from which we find the maximum speed
</span>v_{max}= \sqrt{ \frac{kA^2}{m} }= \sqrt{ \frac{(450 N/m)(0.040 m)^2}{0.500 kg} }=  1.2 m/s
<span>
b) </span><span> the </span>speed<span> of the </span>glider<span> when it is at x= -0.015</span><span>m

We can still use the conservation of energy to solve this part. 
The total mechanical energy is:
</span>E=K_{max}=  \frac{1}{2}mv_{max}^2= 0.36 J
<span>
At x=-0.015 m, there are both potential and kinetic energy. The potential energy is
</span>U= \frac{1}{2}kx^2 =  \frac{1}{2}(450 N/m)(-0.015 m)^2=0.05 J
<span>And since 
</span>E=U+K
<span>we find the kinetic energy when the glider is at this position:
</span>K=E-U=0.36 J - 0.05 J = 0.31 J
<span>And then we can find the corresponding velocity:
</span>K= \frac{1}{2}mv^2
v=  \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2 \cdot 0.31 J}{0.500 kg} }=1.11 m/s
<span>
c) </span><span>the magnitude of the maximum acceleration of the glider;
</span>
For a simple harmonic motion, the magnitude of the maximum acceleration is given by
a_{max} = \omega^2 A
where \omega= \sqrt{ \frac{k}{m} } is the angular frequency, and A is the amplitude.
The angular frequency is:
\omega =  \sqrt{ \frac{450 N/m}{0.500 kg} }=30 rad/s
and so the maximum acceleration is
a_{max} = \omega^2 A = (30 rad/s)^2 (0.040 m) =36 m/s^2

d) <span>the </span>acceleration<span> of the </span>glider<span> at x= -0.015</span><span>m

For a simple harmonic motion, the acceleration is given by
</span>a(t)=\omega^2 x(t)
<span>where x(t) is the position of the mass-spring system. If we substitute x(t)=-0.015 m, we find 
</span>a=(30 rad/s)^2 (-0.015 m)=-13.5 m/s^2
<span>
e) </span><span>the total mechanical energy of the glider at any point in its motion. </span><span>

we have already calculated it at point b), and it is given by
</span>E=K_{max}= \frac{1}{2}mv_{max}^2= 0.36 J
8 0
3 years ago
Which does the big bang theory describe? a cool, dark singularity the origin of the universe the contraction of the universe an
ivolga24 [154]
The origin of the universe
7 0
3 years ago
Read 2 more answers
The function of a capacitor in an electric circuit is to
jok3333 [9.3K]

Answer: B. store electric charges.

Explanation: I JUST TOOK THE PF EXAM AND I GOT IT CORRECT!!!!

7 0
3 years ago
Other questions:
  • HELP ASAP PLEASE - Which best describes how the arrangement of the sun, moon, and the earth affect the range of the tides during
    8·2 answers
  • What is the experimental variable?
    8·1 answer
  • turning on the television is a form of ___ energy that transforms into ___ energy and/or sound energy
    7·1 answer
  • Red light of wavelength 651 nm produces photoelectrons from a certain photoemissive material. Green light of wavelength 521 nm p
    15·2 answers
  • Questions to consider:
    12·1 answer
  • Desde una altura de 120 m se deja caer un cuerpo. Calcular a los 2,5 s i) la rapidez que lleva; ii) cuánto ha descendido; iii) c
    9·1 answer
  • What form of energy is light
    12·2 answers
  • Section B is where I need help with
    14·1 answer
  • A light bulb has 0.25 A of current using a voltage of 120 V. What is the power rating for this bulb?
    13·1 answer
  • One of your classmates, in a fit of unrestrained ego, jumps onto a lab table:
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!