Velocity of the sled is 3.2 m/s
Answer: 90 m/s
Explanation:
Given
mass of racecar 
velocity of racecar 
mass of still honeybadger 
after collision race car is traveling at a speed of 
conserving linear momentum
![Mu+m\times0=Mv_1+ mv_2\quad[v_2=\text{velocity of honeybadger after colllision}]](https://tex.z-dn.net/?f=Mu%2Bm%5Ctimes0%3DMv_1%2B%20mv_2%5Cquad%5Bv_2%3D%5Ctext%7Bvelocity%20of%20honeybadger%20after%20colllision%7D%5D)


Before coming into conclusion first we have to understand both scalar and vector .
A scalar quantity is a physical quantity which has only magnitude for it's complete specification.
A vector quantity is that physical quantity which not only requires magnitude but also possesses direction for it's complete specification.
So the most important factor that differentiate vector from scalar is the direction.
As per the question the student is doing an experiment where he is recording the data obtained during the process.
In order to arrange them in data table, he should ask about the direction of the quantity under consideration.
Hence the correct option is the third option(C)i.e does the measurement include direction?
Mass and distance
force /pull of gravity decreases with the increase in separation between the two bodies
the amount of gravity an object possesses is proportional to the mass of that object.
Answer:
Kinetic energy would increase by a factor of 4 where as momentum would increase by a factor of 2.
Explanation:
Kinetic Energy is given by 0.5*mass*velocity^2. Kinetic Energy is proportional to Velocity^2.
Momentum is given by mass*velocity. Momentum is proportional to Velocity.
If the velocity of an object is doubled, Kinetic energy would increase by a factor of 2^2 i.e 4 times. Momentum would increase by a factor of 2.