A random person put the answer for you
Answer:
B.) He added a base to raise the PH
Explanation:
Took test
Scoria
Explanation:
Scoria is a rock that is commonly made up of gas bubbles and minerals such as hornblende, muscovite, olivine, lucite and or plagioclase.
Scoria is an extrusive igneous rock with a lot of cavities and vesicles indicating gas bubbles.
- Scoria is product of basaltic magma.
- It has nearly the same composition as basalt since it originates from it.
- They silica deficient and very fine grained with holes in them.
- The holes shows channels by which trapped gases are forcefully ejected out.
- They are usually found associated with cindercone volcanoes.
learn more:
Volcanoes brainly.com/question/5055821
#learnwithBrainly
Pure substances are substances which are homogenous in nature. They either consists of atoms of 1 kind or molecules of 1 kind. Atoms are seen in elements, where as molecules are seen in compounds like Acids, Bases, etc.
They mostly have fixed properties like boiling and melting points and are uniform in nature. :D
Answer:
The ratio of f at the higher temperature to f at the lower temperature is 5.356
Explanation:
Given;
activation energy, Ea = 185 kJ/mol = 185,000 J/mol
final temperature, T₂ = 525 K
initial temperature, T₁ = 505 k
Apply Arrhenius equation;
![Log(\frac{f_2}{f_1} ) = \frac{E_a}{2.303 \times R} [\frac{1}{T_1} -\frac{1}{T_2} ]](https://tex.z-dn.net/?f=Log%28%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%29%20%3D%20%5Cfrac%7BE_a%7D%7B2.303%20%5Ctimes%20R%7D%20%5B%5Cfrac%7B1%7D%7BT_1%7D%20-%5Cfrac%7B1%7D%7BT_2%7D%20%5D)
Where;
is the ratio of f at the higher temperature to f at the lower temperature
R is gas constant = 8.314 J/mole.K
![Log(\frac{f_2}{f_1} ) = \frac{E_a}{2.303 \times R} [\frac{1}{T_1} -\frac{1}{T_2} ]\\\\Log(\frac{f_2}{f_1} ) = \frac{185,000}{2.303 \times 8.314} [\frac{1}{505} -\frac{1}{525} ]\\\\Log(\frac{f_2}{f_1} ) = 0.7289\\\\\frac{f_2}{f_1} = 10^{0.7289}\\\\\frac{f_2}{f_1} = 5.356](https://tex.z-dn.net/?f=Log%28%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%29%20%3D%20%5Cfrac%7BE_a%7D%7B2.303%20%5Ctimes%20R%7D%20%5B%5Cfrac%7B1%7D%7BT_1%7D%20-%5Cfrac%7B1%7D%7BT_2%7D%20%5D%5C%5C%5C%5CLog%28%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%29%20%3D%20%5Cfrac%7B185%2C000%7D%7B2.303%20%5Ctimes%208.314%7D%20%5B%5Cfrac%7B1%7D%7B505%7D%20-%5Cfrac%7B1%7D%7B525%7D%20%5D%5C%5C%5C%5CLog%28%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%29%20%3D%200.7289%5C%5C%5C%5C%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%20%3D%2010%5E%7B0.7289%7D%5C%5C%5C%5C%5Cfrac%7Bf_2%7D%7Bf_1%7D%20%20%3D%205.356)
Therefore, the ratio of f at the higher temperature to f at the lower temperature is 5.356