Answer:
The molar concentration of this solution is 0.0463 mol/L
Explanation:
Step 1 : Data given
Mass of a nonelectrolyte solute = 2.69 grams
Volume of water = 345 mL = 0.345 L
Temperature = 26.0°CC = 273 + 26 = 299 K
The osmotic pressure = 863 torr
⇒ 863torr /760 = 1.13553 atm
Step 2: Calculate the molar concentration of this solution
Π = i*M*R*T
⇒with Π = the osmotic pressure = 1.13553 atm
⇒with i = the van't Hoff factor of the nonelectrolyte solute = 1
⇒with M = the molar concentration = TO BE DETERMINED
⇒with R = the gas constant = 0.08206 L*atm/mol*K
⇒with T = the temperature = 299 K
1.13553 atm = 1 * M * 0.08206 L*atm/mol*K * 299 K
M = 1.13553 / (0.08206*299)
M = 0.0463 mol/L
The molar concentration of this solution is 0.0463 mol/L
Answer:
2AlCl3 + Ca3N2 - 2AlN+ 3CaCl2
Answer:
By atomic number?
Explanation:
fingers crossed its right :/
Answer:
<u><em></em></u>
- <u><em>Because the x-intercet of the graph represents volume zero, which indicates the minimum possible temperature or absolute zero.</em></u>
Explanation:
Charle's Law for ideal gases states that, at constant pressure, the <em>temperature</em> and the <em>volume</em> of a sample of gas are protortional.

That means that the graph of the relationship between Temperature, in Kelivn, and Volume is a line, which passes through the origin.
When you work with Temperature in Celsius, and the temperature is placed on the x-axis, the line is shifted to the left 273.15ºC.
Meaning that the Volume at 273.15ºC is zero.
You cannot reach such low temperatures in an experiment, and also, volume zero is not real.
Nevertheless, you can draw the line of best fit and extend it until the x-axis (corresponding to a theoretical volume equal to zero), and read the corresponding temperature.
Subject to the experimental errors, and the fact that the real gases are not ideal, the temperature that you read on the x-axis is the minimum possible temperature (<em>absolute zero</em>) as the minimum possible volume is zero.
Proton gives nucleus positive charge P+