I believe it’s
The reactants
The products
And the Arrow indicating the direction of the chemical reaction
Answer:
2.06 × 10⁻¹⁰
Explanation:
Let's consider the solution of a generic compound AB₂.
AB₂(s) ⇄ A²⁺(aq) + 2B⁻(aq)
We can relate the molar solubility (S) with the solubility product constant (Kps) using an ICE chart.
AB₂(s) ⇄ A²⁺(aq) + 2B⁻(aq)
I 0 0
C +S +2S
E S 2S
The solubility product constant is:
Kps = [A²⁺] × [B⁻]² = S × (2S)² = 4 × S³ = 4 × (3.72 × 10⁻⁴)³ = 2.06 × 10⁻¹⁰
Answer:
27.98g/mol
Explanation:
Using ideal gas law equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
T = temperature (K)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
According to the information given:
V = 2.5L
P = 1.4 atm
T = 282K
n = ?
Using PV = nRT
n = PV/RT
n = 1.4 × 2.5/0.0821 × 282
n = 3.5/23.1522
n = 0.151mol
Using the formula to calculate molar mass of the elemental gas:
mole = mass/molar mass
Molar mass = mass/mole
Molar mass = 4.23g ÷ 0.151mol
Molar mass = 27.98g/mol
2NBr₃ + 3NaOH = N₂ + 3HOBr + 3NaBr
40 mol 48 mol
NBr₃:NaOH = 2:3
40:48 = 2:2.4 = 2.5:3
NBr₃ is the excess reactant
Well apparently... a chemical change occurs when the process produces a gas, light, smell, a fire or heat, or a color change, like melting solid ice changing into water is not a chemical change