Answer:
2
Explanation:
We know that in the Fraunhofer single-slit pattern,
maxima is given by

Given values
θ=2.12°
slit width a= 0.110 mm.
wavelength λ= 582 nm
Now plugging values to calculate N we get

Solving the above equation we get
we N= 2.313≅ 2
Answer: Electrons move around the nucleus in fixed orbits of equal levels of energy
Explanation:
The statement that accurately represents the arrangement of electrons in Bohr’s atomic model is that the electrons move around the nucleus in fixed orbits of equal levels of energy.
It should be noted that the electrons have a fixed energy level when they travel around the nucleus in with energies which varies for different levels.
Higher energy levels are depicted by the orbits that are far from the nucleus. There's emission of light when the electrons then return back to a lower energy level.
Answer : The correct option is, (C) 17 m/s
Explanation :
Formula used :

where,
K.E = kinetic energy = 6.8 J
m = mass of object = 46 g = 0.046 kg (1 kg = 1000 g)
v = velocity
Now put all the given values in the above formula, we get:




Therefore, the ball's velocity be as it leaves the cannon is, 17 m/s
Answer: True
Explanation: Inductors are similar to resistors, due to the fact that they offer resistance to current flow, but Inductors are different from resistors in that, while resistors loss electric energy in a circuit in the form of heat, an inductor stores that energy in the form of a magnetic field.
As current passes through an inductor overtime it tends to store current in the form of magnetic field. Therefore the electric-power industry can store energy in large Inductors.
the equation of the tangent line must be passed on a point A (a,b) and
perpendicular to the radius of the circle. <span>
I will take an example for a clear explanation:
let x² + y² = 4 is the equation of the circle,
its center is C(0,0). And we assume that the tangent line passes to the point
A(2.3).
</span>since the tangent passes to the A(2,3), the line must be perpendicular to the radius of the circle.
<span>Let's find the equation of the line parallel to the radius.</span>
<span>The line passes to the A(2,3) and C (0,0). y= ax+b is the standard form of the equation. AC(-2, -3) is a vector parallel to CM(x, y).</span>
det(AC, CM)= -2y +3x =0, is the equation of the line // to the radius.
let's find the equation of the line perpendicular to this previous line.
let M a point which lies on the line. so MA.AC=0 (scalar product),
it is (2-x, 3-y) . (-2, -3)= -4+4x + -9+3y=4x +3y -13=0 is the equation of tangent