1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rina8888 [55]
3 years ago
10

It is incorrect to say the temperature of an object is 23k why

Physics
1 answer:
riadik2000 [5.3K]3 years ago
4 0
It is incorrect because 23 k is 23 kelvins and not 23 degrees kelvin.
You might be interested in
With what tension must a rope with length 3.00 mm and mass 0.105 kgkg be stretched for transverse waves of frequency 40.0 HzHz t
VladimirAG [237]

Answer:

the tension of the rope is 34.95 N

Explanation:

Given;

length of the rope, L = 3 m

mass of the rope, m = 0.105 kg

frequency of the wave, f = 40 Hz

wavelength of the wave, λ = 0.79 m

Let the tension of the rope = T

The speed of the wave is given as;

v = f\lambda = \sqrt{\frac{T}{\mu} } \\\\where;\\\\\mu \ is \ mass \ per \ unit \ length\\\\\mu  = \frac{0.105}{3} = 0.035 \ kg/m\\\\v = f\lambda = 40 \times 0.79 = 31.6 \ m/s\\\\v =  \sqrt{\frac{T}{\mu} } \\\\v^2 = \frac{T}{\mu} \\\\T = v^2 \mu\\\\T = (31.6^2)(0.035)\\\\T = 34.95 \ N

Therefore, the tension of the rope is 34.95 N

4 0
3 years ago
Now let’s apply the work–energy theorem to a more complex, multistep problem. In a pile driver, a steel hammerhead with mass 200
andrew11 [14]

Answer:

a) v = 7.67

b) n = 81562 N

Explanation:

Given:-

- The mass of hammer-head, m = 200 kg

- The height at from which hammer head drops, s12 = 3.00 m

- The amount of distance the I-beam is hammered, s23 = 7.40 cm

- The resistive force by contact of hammer-head and I-beam, F = 60.0 N

Find:-

(a) the speed of the hammerhead just as it hits the I-beam and

(b) the average force the hammerhead exerts on the I-beam.

Solution:-

- We will consider the hammer head as our system and apply the conservation of energy principle because during the journey of hammer-head up till just before it hits the I-beam there are no external forces acting on the system:

                                   ΔK.E = ΔP.E

                                  K_2 - K_1 = P_1- P_2

Where,  K_2: Kinetic energy of hammer head as it hits the I-beam

             K_1: Initial kinetic energy of hammer head ( = 0 ) ... rest

             P_2: Gravitational potential energy of hammer head as it hits the I-beam. (Datum = 0)

             P_1: Initial gravitational potential energy of hammer head      

- The expression simplifies to:

                                K_2 = P_1

Where,                     0.5*m*v2^2 = m*g*s12

                                v2 = √(2*g*s12) = √(2*9.81*3)

                                v2 = 7.67 m/s

- For the complete journey we see that there are fictitious force due to contact between hammer-head and I-beam the system is no longer conserved. All the kinetic energy is used to drive the I-beam down by distance s23. We will apply work energy principle on the system:

                               Wnet = ( P_3 - P_1 ) + W_friction

                               Wnet = m*g*s13 + F*s23

                               n*s23 = m*g*s13 + F*s23

Where,    n: average force the hammerhead exerts on the I-beam.

               s13 = s12 + s23

Hence,

                             n = m*g*( s12/s23 + 1) + F

                             n = 200*9.81*(3/0.074 + 1) + 60

                             n = 81562 N

                               

                                                   

6 0
3 years ago
An object starts at rest. Its acceleration over 30 seconds is shown in the graph below:
ddd [48]

Answer:

The instantaneous speed of the object after the first five seconds is 12.5 m/s.

(C) is correct option.

Explanation:

Given that,

An object starts at rest. Its acceleration over 30 seconds.

We need to calculate the instantaneous speed of the object after the first five seconds

We know that,

Area under the acceleration -time graph gives speed.

According to figure,

speed = area\ of\ tringle

speed=\dfrac{1}{2}\times b\times h

speed =\dfrac{1}{2}\times5\times5

speed-12.5\ m/s

Hence, The instantaneous speed of the object after the first five seconds is 12.5 m/s.

6 0
3 years ago
Can someone help me please? I’ve been trying to solve these questions all day.
qwelly [4]

#16

If we put a resistor in circuit it will slow the speed of current

Let's check ohms law

\\ \rm\Rrightarrow \dfrac{V}{I}=R

  • So if resistance is more current is less

#17

Again use ohms law

\\ \rm\Rrightarrow V=IR

\\ \rm\Rrightarrow V\propto I

  • Voltage must be increased
4 0
2 years ago
5. a stone propelled from a catapult with a speed of 50 m/s attains a height of 100m. Calculate
omeli [17]

Answer:

<h3>The answer is 2 s</h3>

Explanation:

The time of flight can be found by using the formula

t =  \frac{d}{v}  \\

d is the distance covered

v is the velocity

From the question we have

t =  \frac{100}{50}  =  \frac{10}{5}  \\

We have the final answer as

<h3>2 s</h3>

Hope this helps you

8 0
2 years ago
Other questions:
  • Most rocks contain more than one type of
    15·1 answer
  • The wires in a household lamp cord are typically 3.5 mm apart center to center and carry equal currents in opposite directions.
    5·1 answer
  • Explain why this statement is incorrect: “If I find something on the Internet, that means it is for public use, and I can do any
    7·2 answers
  • Which image represents the force on a positively charged particle caused by an approaching magnet?
    10·1 answer
  • A tsunami originatig near the Alaska coast had a wavelength of 470 miles and traveled 2300 miles in 5.3 h. Determine the wave’s
    10·1 answer
  • Van finds a metamorphic rock as he is exploring a small ravine near his house. Metamorphic rock is a type of rock that has gone
    15·2 answers
  • Which is the correct order of the academic pathway of a pulmonologist?
    5·2 answers
  • Which phenomenon occurs when one wave is superimposed on another ?
    5·2 answers
  • Tides can be used to convert kinetic energy into what kind of energy?.
    15·1 answer
  • An object weighs 200N on earth What would be its mass on the moon
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!