1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ruslelena [56]
3 years ago
10

Which image represents the force on a positively charged particle caused by an approaching magnet?

Physics
1 answer:
Amanda [17]3 years ago
4 0

Answer:

Image B represents the force on a positively charged particle caused by an approaching magnet.

Explanation:

The most fundamental law of magnetism is that like shafts repulse each other and dissimilar to posts pull in one another; this can without much of a stretch be seen by endeavoring to put like posts of two magnets together. Further attractive impacts additionally exist. On the off chance that a bar magnet is cut into two pieces, the pieces become singular magnets with inverse shafts. Also, pounding, warming or winding of the magnets can demagnetize them, on the grounds that such dealing with separates the direct game plan of the particles. A last law of magnetism alludes to maintenance; a long bar magnet will hold its magnetism longer than a short bar magnet. The domain theory of magnetism expresses that every single enormous magnet involve littler attractive districts, or domains. The attractive character of domains originates from the nearness of significantly littler units, called dipoles. Iotas are masterminded in such a manner in many materials that the attractive direction of one electron counteracts the direction of another; in any case, ferromagnetic substances, for example, iron are unique. The nuclear cosmetics of these substances is with the end goal that littler gatherings of particles unite as one into zones called domains; in these, all the electrons have the equivalent attractive direction.

You might be interested in
Location C is 0.02 m from a small sphere which has a charge of 3 nanocoulombs uniformly distributed on its surface. Location D i
kkurt [141]

The change in potential along a path from C to D due to a small charged sphere is 900 V.

Given:

Charge, Q = 3 nC = 3 × 10⁻⁹ C

Distance between the sphere and point C, r₁ = 0.02 m

Distance between the sphere and point D, r₂ = 0.06 m

Calculation:

We know that the electric potential is given as:

V = k Q/r   - (1)

where, V is the electric potential

            k is Coulomb's force constant

            Qis the charge on the  sphere

            r is the  separation distance

The electric potential at point C due to charged sphere can be given as:

V₁ = k Q/r₁

   = (9×10⁹ Nm²/C²) [(3 × 10⁻⁹ C)/(0.02 m)]

   = 1350 V

The electric potential at point D due to charged sphere can be given as:

V₂ = k Q/r₂

   = (9×10⁹ Nm²/C²) [(3 × 10⁻⁹ C)/(0.06 m)]

   = 450 V

Now, the change in potential along the path from C to D can be calculated as:

ΔV = V₂ - V₁

     = 450 V - 1350 V

     = -900 V

The negative sign indicates that the work is done against the electric field in moving the charge from C to D.

Therefore, the change in potential along a path from C to D is 900 V against the direction of the electric field.

Learn more about the electric potential here:

<u>brainly.com/question/12645463</u>

#SPJ4

8 0
1 year ago
Read 2 more answers
. An object has a position given by ~r(t) = [3.0 m − (4.00 m/s)t]ˆı + [6.0 m − (8.00 m/s2 )t 2 ]ˆ , where all quantities are in
kupik [55]

Answer:

(c) 16 m/s²

Explanation:

The position is r(t) = [3.0 \text{ m} - (4.00 \text{ m/s})t]\hat{i} + [6.0 \text{m} - (8.00 \text{ m/s}^2 )t^2 ]\hat{j}.

The velocity is the first time-derivative of <em>r(t).</em>

<em />v(t) = \dfrac{d}{dt}r(t) = -4.00\,\hat{i} -16t\,\hat{j}<em />

The acceleration is the first time-derivative of the velocity.

a(t) = \dfrac{d}{dt} v(t) = -16\hat{j}

Since <em>a(t)</em> does not have the variable <em>t</em>, it is constant. Hence, at any time,

a = -16\hat{j}

Its magnitude is 16 m/s².

4 0
3 years ago
PLEASE HELPP MEEE!!!!!!!!!The goal is to increase the power; therefore, it is necessary to
Brrunno [24]

As we know that power is defined as rate of work done

so we will have

P = \frac{Work}{time}

so in order to increase the power as per above formula we know that either we need to increase the work or we need to decrease the time to complete that work

So here the correct answer will be

increase the work being done or decrease the time in which the work is completed.

3 0
3 years ago
Read 2 more answers
A thin layer of liquid methylene iodide (n = 1.756) is sandwiched between two flat, parallel plates of glass (n = 1.50). What mu
Harrizon [31]

Answer:

t = 96.1 nm

Explanation:

For strong reflection through liquid layer we know that the path difference between two reflected light rays must be integral multiple of wavelength

now we know that the path difference of two reflected light from thin liquid layer is given as

2\mu t - \frac{\lambda}{2} = N\lambda

here we know that

\mu = 1.756

t = thickness of layer

N = 0 (for minimum thickness of layer)

\lambda = 675 nm

now we have

2(1.756) t = \frac{675 nm}{2}

t = 96.1 nm

5 0
3 years ago
What force is needed to accelerate a 0.5kg football at a rate of 40m/s
GREYUIT [131]
Force=mass x acceleration
f= 0.5 x40
f=20N
6 0
3 years ago
Other questions:
  • Which best describes the transition from gas to liquid?
    10·2 answers
  • How much kinetic energy does a baseball with a mass of 0.143 kg have it it is traveling at a velocity of 41.1 m/s?
    8·1 answer
  • How many times smaller is the moon than earth?
    14·2 answers
  • A cat has a mass of 3 kg and runs at a speed of 6 m/s. how much kinetic energy does the cat have?
    12·1 answer
  • A model of an atom is shown above. The blue dots represent electrons, and the red dot represents the nucleus. This model accurat
    9·2 answers
  • Which best describes the transition from gas to liquid
    11·1 answer
  • The focal point of a concave mirror is _____ the mirror. ( in front of; behind)
    9·2 answers
  • A baseball player runs 27 m from third base to home plate in 3.2 s. What is
    14·2 answers
  • WILL GIVE BRAINLY!! PLEASE HELPP
    5·1 answer
  • How does the entire nervous system allow our bodies to interact with our world? Your response must include the following terms:
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!