Answer:
The 6 fingers allele is dominant
Explanation:
We are told that the the individual is genotypically heterozygous, that is the have both types of the finger allele: the 5 finger allele and the 6 fingers allele however phenotypically, 6 fingers are observed. From this we can conclude that the 6 fingers allele is the one that is dominant because it is the one that is expressed phenotypically.
Using the Universal Gratitation Law, we have:
Again applying the formula in the new situation, comes:
Number 4If you notice any mistake in my english, please let me know, because i am not native.
Answer:
F = 4.47 10⁻⁶ N
Explanation:
The expression they give for the strength of the tide is
F = 2 G m M a / r³
Where G has a value of 6.67 10⁻¹¹ N m² / kg² and M which is the mass of the Earth is worth 5.98 10²⁴ kg
They ask us to perform the calculation
F = 2 6.67 10⁻¹¹ 135 5.98 10²⁴ 13 / (6.79 10⁶)³
F = 4.47 10⁻⁶ N
This force is directed in the single line at the astronaut's mass centers and the space station
complete question:
A child bounces a 60 g superball on the sidewalk. The velocity change of the superball is from 22 m/s downward to 15 m/s upward. If the contact time with the sidewalk is 1/800 s, what is the magnitude of the average force exerted on the superball by the sidewalk
Answer:
F = 1776 N
Explanation:
mass of ball = 60 g = 0.06 kg
velocity of downward direction = 22 m/s = v1
velocity of upward direction = 15 m/s = v2
Δt = 1/800 = 0.00125 s
Linear momentum of a particle with mass and velocity is the product of the mass and it velocity.
p = mv
When a particle move freely and interact with another system within a period of time and again move freely like in this scenario it has a definite change in momentum. This change is defined as Impulse .
I = pf − pi = ∆p
F = ∆p/∆t = I/∆t
let the upward velocity be the positive
Δp = mv2 - m(-v1)
Δp = mv2 - m(-v1)
Δp = m (v2 + v1)
Δp = 0.06( 15 + 22)
Δp = 0.06(37)
Δp = 2.22 kg m/s
∆t = 0.00125
F = ∆p/∆t
F = 2.22/0.00125
F = 1776 N