Answer:
Explanation:
From the given information:
The concentration of metal ions are:
![[Ca^{2+}]= \dfrac{0.003474 \ M \times 20.49 \ mL}{10.0 \ mL}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%3D%20%5Cdfrac%7B0.003474%20%5C%20M%20%5Ctimes%2020.49%20%5C%20mL%7D%7B10.0%20%5C%20mL%7D)
![[Ca^{2+}]=0.007118 \ M](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%3D0.007118%20%5C%20M)
![[Mg^2+] = \dfrac{0.003474 \ M\times (26.23 - 20.49 )mL}{10.0 \ mL}](https://tex.z-dn.net/?f=%5BMg%5E2%2B%5D%20%3D%20%5Cdfrac%7B0.003474%20%5C%20M%5Ctimes%20%2826.23%20%20-%2020.49%20%29mL%7D%7B10.0%20%5C%20mL%7D)

Mass of Ca²⁺ in 2.00 L urine sample is:

= 0.1598 g
Mass of Ca²⁺ = 159.0 mg
Mass of Mg²⁺ in 2.00 L urine sample is:

= 0.3461 g
Mass of Mg²⁺ = 346.1 mg
Explanation:
B. Recycles slowly
And it also depends on the organism
Answer:
True
Explanation:
Fossil age can determine organism changes related to the time scale. Fossils provide scientists with evidence that allows them to hypothesize how living organisms have evolved over time.
fossil can be studied to determine what kind of organism it represents, how the organism lived, and how it was preserved. However, by itself a fossil has little meaning unless it is placed within some context. The age of the fossil must be determined so it can be compared to other fossil species from the same time period. Understanding the ages of related fossil species helps scientists piece together the evolutionary history of a group of organisms.
I’m pretty sure it’s sulphur dioxide
Answer:
(See explanation for further details)
Explanation:
1) The quantity of moles of sulfur is:


2) The number of atoms of helium is:


3) The quantity of moles of carbon monoxide is:


4) The number of molecules of sulfur dioxide is:


5) The quantity of moles of sodium chloride is:


6) The number of formula units of magnesium iodide is:


7) The quantity of moles of potassium permanganate is:


8) The number of molecules of carbon tetrachloride is:


9) The quantity of moles of aluminium is:


10) The number of molecules of oxygen difluoride is:

