Answer:
Option D. 30 mL.
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
HNO3 + KOH —> KNO3 + H2O
From the balanced equation above,
The mole ratio of the acid, nA = 1
The mole ratio of the base, nB = 1
Step 2:
Data obtained from the question. This include the following:
Volume of base, KOH (Vb) =.?
Molarity of base, KOH (Mb) = 0.5M
Volume of acid, HNO3 (Va) = 10mL
Molarity of acid, HNO3 (Ma) = 1.5M
Step 3:
Determination of the volume of the base, KOH needed for the reaction. This can be obtained as follow:
MaVa / MbVb = nA/nB
1.5 x 10 / 0.5 x Vb = 1
Cross multiply
0.5 x Vb = 1.5 x 10
Divide both side by 0.5
Vb = (1.5 x 10) /0.5
Vb = 30mL
Therefore, the volume of the base, KOH needed for the reaction is 30mL.
The red bottle would have the lowest frequency because red light has the longest wavelengths. The light passing through the violet would have the highest frequency because its wavelengths are the shortest.
Answer:
0.48
Explanation:
all you need is to decide 12% with 100% then you multiply it by 4L.
Answer:
i have taken environmental science so i can help
Last option:
CO2 (g) + H2O (l) -> H2CO3 (aq)
In the brackets:
g = gas,
l = liquid,
s = solid,
aq = aqueous.
So,
CO2 (g) = carbon dioxide gas
H2O (l) = liquid water
H2CO3 (aq) = aqueous carbonic acid