It is really easy if you look up an electron configuration table (one that looks like a periodic table) and then just go down the rows left to right, top to bottom, and just stop when you get to where the element is on the table.
Answer:
Exergonic ,Endergonic,low concentration area,high
Explanation:
In exergonic reaction,certain molecules are broken down;in the process they release energy which is captured when high energy molecules(such as ATP and NADH) are formed.
The breakdown of these molecules can be coupled to thermodynamically unfavorable processes such as Endergonic reactions or pumping og hydrogen ion from low concentration areas to high concentration areas.
Answer:
Cd(s) + AgNO₃(aq) → Cd(NO₃)₂ (aq) + Ag(s)
Oxidized: Cd
Reduced: Ag
Explanation:
Cd(s) + AgNO₃(aq) → Cd(NO₃)₂ (aq) + Ag(s)
Cd → Cd²⁺ + 2e⁻ Half reaction oxidation
1e⁻ + Ag⁺ → Ag Half reaction reduction
Ag changed oxidation number from +1 to 0
Cd changed oxidation number from 0 to +2
Let's ballance the electrons
( Cd → Cd²⁺ + 2e⁻ ) .1
( 1e⁻ + Ag⁺ → Ag ) .2
Cd + 2e⁻ + 2Ag⁺ → 2Ag + Cd²⁺ + 2e⁻
Finally the ballance equation is:
Cd(s) + 2AgNO₃(aq) → Cd(NO₃)₂ (aq) + 2Ag(s)
A) The limiting reactant is Al
b) Br2 is the excess reactant
c) The amount moles of AlBr3 that get produced will be equal to the number of moles of Al to begin with.
d) 0