Answer:
hmm i dont know but i can try mate!
The layers of the atmosphere are defined by variations in temperature and pressure with altitude. These include the troposphere (0 to 16 km), stratosphere (16 to 50 km), mesosphere (50 to 80km) and thermosphere (80 to 640km).
Answer:
11.61 is the pH of 10.0 mL of a solution containing 3.96 g of sodium stearate.
Explanation:
Concentration of sodium stearate acid : c
Moles of sodium stearate = 
Volume of the solution = 10.0 mL = 0.010 L

![[C_{17}H_{35}COO^-]=c=1.294 M](https://tex.z-dn.net/?f=%5BC_%7B17%7DH_%7B35%7DCOO%5E-%5D%3Dc%3D1.294%20M)

initially c
c 0 0
At equilibrium
(c-x) x x
Dissociation constant of an acid = 
Expression of a dissociation constant of an acid is given by:

Solving for x;
x = 0.0041 M
![[OH^-]=0.0041 M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.0041%20M)
The pOH of the solution:
![pOH=-\log[OH^-]=-\log[0.0041 M]=2.39](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D%3D-%5Clog%5B0.0041%20M%5D%3D2.39)
pH = 14 -pOH
pH = 14 - 2.39 = 11.61
11.61 is the pH of 10.0 mL of a solution containing 3.96 g of sodium stearate.
The answer to this would be 22 mL