Typically occurs when we associate things to other things that look alike. We see that in many experiments, specifically “Little Albert” who was conditioned to be afraid of rats but later was afraid of anything that resembled that of a rat.
Hope this helps!
Answer:
B. 0.16 m
Explanation:
The vertical distance by which the player will miss the target is equal to the vertical distance covered by the dart during its motion.
Since the dart is thrown horizontally, the initial vertical velocity is zero:

While the horizontal velocity is

The horizontal distance covered is

Since the dart moves by uniform motion along the horizontal direction, the time it takes for covering this distance is

along the vertical direction, the motion is a uniformly accelerated motion with constant downward acceleration g=9.8 m/s^2, so the vertical distance covered is given by

Answer:
The volume of an aluminum cube is 0.212 cm³.
Explanation:
Given that,
Edge of cube = 4.00 cm
Initial temperature = 19.0°C
Final temperature = 67.0°C
linear expansion coefficient 
We need to calculate the volume expansion coefficient
Using formula of volume expansion coefficient

Put the value into the formula


We need to calculate the volume



The change temperature of the cube is

Put the value into the formula

We need to calculate the increases volume
Using formula of increases volume

Put the value into the formula


Hence, The volume of an aluminum cube is 0.212 cm³.
The friction factor and head loss when velocity is 1m/s is 0.289 and 1.80 × 10^8 respectively. Also, the friction factor and head loss when velocity is 3m/s is 0.096 and 5.3 × 10^8 respectively.
<h3>How to determine the friction factor</h3>
Using the formula
μ = viscosity = 0. 06 Pas
d = diameter = 120mm = 0. 12m
V = velocity = 1m/s and 3m/s
ρ = density = 0.9
a. Velocity = 1m/s
friction factor = 0. 52 × 
friction factor = 0. 52 × 
friction factor = 0. 52 × 0. 55
friction factor 
b. When V = 3mls
Friction factor = 0. 52 × 
Friction factor = 0. 52 × 
Friction factor = 0. 52 × 0. 185
Friction factor 
Loss When V = 1m/s
Head loss/ length = friction factor × 1/ 2g × velocity^2/ diameter
Head loss = 0. 289 ×
×
× 
Head loss = 1. 80 × 10^8
Head loss When V = 3m/s
Head loss =
×
×
× 
Head loss = 5. 3× 10^8
Thus, the friction factor and head loss when velocity is 1m/s is 0.289 and 1.80 ×10^8 respectively also, the friction factor and head loss when velocity is 3m/s is 0.096 and 5.3 ×10^8 respectively.
Learn more about friction here:
brainly.com/question/24338873
#SPJ1
Answer:
The object would weight 63 N on the Earth surface
Explanation:
We can use the general expression for the gravitational force between two objects to solve this problem, considering that in both cases, the mass of the Earth is the same. Notice as well that we know the gravitational force (weight) of the object at 3200 km from the Earth surface, which is (3200 + 6400 = 9600 km) from the center of the Earth:

Now, if the body is on the surface of the Earth, its weight (w) would be:

Now we can divide term by term the two equations above, to cancel out common factors and end up with a simple proportion:
