The true statement about Sam’s conjecture is that the conjecture is not correct
<h3>How to determine if Sam’s conjecture is correct or not?</h3>
Sam’s conjecture is given as:
For x ≤ - 2
It is true that x^5 + 7 > x^3.
The inequality x ≤ - 2 means that the highest value of x is -2
Assume the value of x is -2, then we have:
(-2)^5 + 7 > (-2)^3
Evaluate the exponents
-32 + 7 > -8
Evaluate the sum
-25 > -8
The above inequality is false because -8 is greater than -25 i.e. -8 > -25 or -25 < -8
Hence, the true statement about Sam’s conjecture is that the conjecture is not correct
Read more about conjectures at
brainly.com/question/20409479
#SPJ1
Answer:
- b/a
- 16a²b²
- n¹⁰/(16m⁶)
- y⁸/x¹⁰
- m⁷n³n/m
Step-by-step explanation:
These problems make use of three rules of exponents:

In general, you can work the problem by using these rules to compute the exponents of each of the variables (or constants), then arrange the expression so all exponents are positive. (The last problem is slightly different.)
__
1. There are no "a" variables in the numerator, and the denominator "a" has a positive exponent (1), so we can leave it alone. The exponent of "b" is the difference of numerator and denominator exponents, according to the above rules.

__
2. 1 to any power is still 1. The outer exponent can be "distributed" to each of the terms inside parentheses, then exponents can be made positive by shifting from denominator to numerator.

__
3. One way to work this one is to simplify the inside of the parentheses before applying the outside exponent.

__
4. This works the same way the previous problem does.

__
5. In this problem, you're only asked to eliminate the one negative exponent. That is done by moving the factor to the numerator, changing the sign of the exponent.

Answer:
Every day, the mass of the sunfish is multiplied by a factor of <u>[ln(1.34)/6]. </u>
<u></u>
Step-by-step explanation:
You have the following function:

To know what is the factor that multiplies the mass of the sunfish each day, you derivative the function M(t):
(1)
where you have used the following general derivative:

The derivative give you the increase in the mass per day (because t is days). By the expression (1) you can conclude that each day the mass increase a factor of [ln(1.34)/6].
Every day, the mass of the sunfish is multiplied by a factor of <u>[ln(1.34)/6]. </u>