Answer:
The correct answer is a rarefaction.
Explanation:
Sound waves are longitudinal waves that propagate in a medium, such as air. As the vibration continues, a series of successive condensations and rarefactions form and propagate from it. The pattern created in the air is something like a sinusoidal curve to represent a sound wave.
There are peaks in the sine wave at the points where the sound wave has condensations and valleys where it has rarefactions.
Have a nice day!
The answer is letter C. <span>A train travels from the bottom of a hill to the top of a hill, its moves slower by the time it reaches the top is an example of negative acceleration.
In physics, acceleration can be described as an objects change of velocity. When an object gains velocity, it is positive acceleration, and negative acceleration for the opposite.
</span>
Thank you for posting your question. I hope you found what you were after. Please feel free to ask me more.
<span> </span>
Answer:
I may not have the answer so i'll just give up some hints.
Multiply the time by the acceleration due to gravity to find the velocity when the object hits the ground. If it takes 9.9 seconds for the object to hit the ground, its velocity is (1.01 s)*(9.8 m/s^2), or 9.9 m/s. Choose how long the object is falling. In this example, we will use the time of 8 seconds. Calculate the final free fall speed (just before hitting the ground) with the formula v = v₀ + gt = 0 + 9.80665 * 8 = 78.45 m/s . Find the free fall distance using the equation s = (1/2)gt² = 0.5 * 9.80665 * 8² = 313.8 m .h = 0.5 * 9.8 * (1.5)^2 = 11m. b. V = gt = 9.8 * 1.5 = 14.7m/s. A feather and brick dropped together. Air resistance causes the feather to fall more slowly. If a feather and a brick were dropped together in a vacuum—that is, an area from which all air has been removed—they would fall at the same rate, and hit the ground at the same time.When an object's point is taller the thing that is going down it will go faster than when the point is lower. EXAMPLE: The object is the tennis ball if you drop it down the higher hill it will be faster than if you drop it down a shorter hill. In other words, if two objects are the same size but one is heavier, the heavier one has greater density than the lighter object. Therefore, when both objects are dropped from the same height and at the same time, the heavier object should hit the ground before the lighter one.
I hope my little bit (big you may say) hint help you with your question.
Answer:
The strength of the magnetic field that the line produces is
.
Explanation:
From Biot-Savart law, the equation to determine the strength of the magnetic field for any straight wire can be deduced:
(1)
Where
is the permiability constant, I is the current and r is the distance from the wire.
Notice that it is necessary to express the current, I, from kiloampere to ampere.
⇒ 
Finally, equation 1 can be used:
Hence, the strength of the magnetic field that the line produces is
.