1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Semmy [17]
3 years ago
6

How do gamma rays use electromagnetic waves to function....PLS HELP

Physics
1 answer:
BabaBlast [244]3 years ago
4 0

Answer:

Gamma-rays have the smallest wavelengths and the most energy of any other wave in the electromagnetic spectrum. These waves are generated by radioactive atoms and in nuclear explosions.

Explanation:

Gamma-rays can kill living cells, a fact which medicine uses to its advantage, using gamma-rays to kill cancerous cells.

Hope this helps!

Brain-LIst?

You might be interested in
Given that the mass of the Earth is 5.972 * 10^24 kg and the radius of the Earth is
Pachacha [2.7K]

Answer:

gₓ = 6.52 m/s²

Explanation:

The value of acceleration due to gravity on the surface of earth is given as:

g = GM/R²   -------------------- equation 1

where,

g = acceleration due to gravity on surface of earth

G = Universal Gravitational Constant

M = Mass of Earth

R = Radius of Earth

Now, for the alien planet:

gₓ = GMₓ/Rₓ²

where,

gₓ = acceleration due to gravity at the surface of alien planet

Mₓ = Mass of Alien Planet = 2.4 M

Rₓ = Radius of Alien Planet = 1.9 R

Therefore,

gₓ = G(2.4 M)/(1.9 R)²

gₓ = 0.66 GM/R²

using equation 1

gₓ = 0.66 g

gₓ = (0.66)(9.81 m/s²)

<u>gₓ = 6.52 m/s²</u>

3 0
3 years ago
A woman standing before a cliff claps her hands, and 2.8s later she hears the echo. How far away is the cliff? The speed of soun
ella [17]

Answer:

480.2 m

Explanation:

The following data were obtained from the question:

Speed of sound (v) = 343 m/s.

Time (t) = 2.8 s

Distance (x) of the cliff =?

The distance of the cliff from the woman can be obtained as follow:

v = 2x /t

343 = 2x /2.8

Cross multiply

2x = 343 × 2.8

2x = 960.4

Divide both side by the coefficient of x i.e 2

x = 960.4/2

x = 480.2 m

Therefore, the cliff is 480.2 m away from the woman.

4 0
3 years ago
Suppose that an object is moving along a vertical line. Its vertical position is given by the equation L(t) = 2t3 + t2-5t + 1, w
Tatiana [17]

Answer:

The average velocity is

266\frac{m}{s},274\frac{m}{s} and 117\frac{m}{s} respectively.

Explanation:

Let's start writing the vertical position equation :

L(t)=2t^{3}+t^{2}-5t+1

Where distance is measured in meters and time in seconds.

The average velocity is equal to the position variation divided by the time variation.

V_{avg}=\frac{Displacement}{Time} = Δx / Δt = \frac{x2-x1}{t2-t1}

For the first time interval :

t1 = 5 s → t2 = 8 s

The time variation is :

t2-t1=8s-5s=3s

For the position variation we use the vertical position equation :

x2=L(8s)=2.(8)^{3}+8^{2}-5.8+1=1049m

x1=L(5s)=2.(5)^{3}+5^{2}-5.5+1=251m

Δx = x2 - x1 = 1049 m - 251 m = 798 m

The average velocity for this interval is

\frac{798m}{3s}=266\frac{m}{s}

For the second time interval :

t1 = 4 s → t2 = 9 s

x2=L(9s)=2.(9)^{3}+9^{2}-5.9+1=1495m

x1=L(4s)=2.(4)^{3}+4^{2}-5.4+1=125m

Δx = x2 - x1 = 1495 m - 125 m = 1370 m

And the time variation is t2 - t1 = 9 s - 4 s = 5 s

The average velocity for this interval is :

\frac{1370m}{5s}=274\frac{m}{s}

Finally for the third time interval :

t1 = 1 s → t2 = 7 s

The time variation is t2 - t1 = 7 s - 1 s = 6 s

Then

x2=L(7s)=2.(7)^{3}+7^{2}-5.7+1=701m

x1=L(1s)=2.(1)^{3}+1^{2}-5.1+1=-1m

The position variation is x2 - x1 = 701 m - (-1 m) = 702 m

The average velocity is

\frac{702m}{6s}=117\frac{m}{s}

5 0
3 years ago
A car comes to a bridge during a storm and finds the bridge washed out. The driver must get to the other side, so he decides to
aksik [14]

Answer:

The answer is below

Explanation:

a) The vertical displacement = Δy = 21.5 m - 1.5 m = 20 m

The horizontal displacement = Δx = 69 m wide

Using the formula:

\Delta y = u_yt+ \frac{1}{2}a_yt^2\\ \\u_y=initial\ velocity\ of \ car\ in\ y\ direction = 0,a_y=g=acceleration\ due\ to\ gravity\\=10m/s^2\\\\\Delta y =  \frac{1}{2}a_yt^2\\\\\Delta y=\frac{1}{2}a_yt^2\\\\t=\sqrt{\frac{2\Delta y}{a_y} }=\sqrt{\frac{2*20}{10} }  =2\ m/s

Also:

\Delta x = u_xt+ \frac{1}{2}a_xt^2\\ \\u_x=initial\ velocity\ of \ car\ in\ x\ direction = 0,a_x=acceleration=0\\\\\Delta x =  u_xt\\\\u_x=\frac{\Delta x}{t}=\frac{69}{2} =34.5\ m/s

b)The car is moving at a constant speed in the horizontal direction, hence the initial velocity = final velocity

v_x=u_x=34.5\ m/s\\\\v_y=u_y+a_yt\\\\v_y=0+gt\\\\v_y=10(2)=20\ m/s\\\\v=\sqrt{v_x^2+v_y^2}=\sqrt{34.5^2+20^2}=39.9\ m/s\\ v=39.9\ m/s

4 0
4 years ago
(Hypothetical question)<br> If the earth was square and not round what would it be like
Nuetrik [128]

Answer:

It would be a square and 2d

Explanation:

8 0
2 years ago
Read 2 more answers
Other questions:
  • Describe how total resistance is determined for series and parallel circuits
    14·1 answer
  • Type the correct answer in the box. Use numerals instead of words.
    7·1 answer
  • It takes about 8 minutes for light to travel from the Sun to Earth. Pluto is 40 times as far from us as the Sun when Pluto is cl
    5·1 answer
  • Can someone help me! Please
    15·2 answers
  • A thin soap bubble of index of refraction 1.33 is viewed with light of wavelength 550.0nm and appears very bright. Predict a pos
    12·1 answer
  • The gravity on earth is 6 times greater than the gravity on the moon. An object weighing 2 lbs. on the moon will weigh:
    15·1 answer
  • Hi please, I Have An attachment on Waves, Just two Objective Questions Whoever Answers Will be Marked Brainliest thank you.
    11·1 answer
  • The kinetic energy of a car is 8 × 106 J as it travels along a horizontal road. How much power is required to stop the car in 10
    7·1 answer
  • Electrical potential is measured in units called what
    14·1 answer
  • 1. A car has a mass of 400 kg and is driving down a hill at 2 m/s/s. What is the force of the car?​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!