Answer:
Explanation:
a) Energy stored in spring = 1/2 k x² = .5 x k 0.1²
500 = 5 x 10⁻³ k ,
k = (500/5) x 10³ = 10⁵ N/m
b )
k = 4.5 x 10¹ = 45 N/m
Stored energy = 1/2 k x² = .5 x 45 x 8² x 10⁻⁴ =1440 x 10⁻⁴ J
This energy gets dissipated by friction .
work done by friction = μ mg d
d is the distance traveled under friction
so 1440 x 10⁻⁴ = μ x 3 x 9.8 x 2
μ = 245 x 10⁻⁴ or 0.00245 which appears to be very small. .
Answer:
4 tonne/m³
Explanation:
ρ = m / V
ρ = 49 g / (π (17.4 mm / 2)² (50.3 mm))
ρ = 0.0041 g/mm³
Converting to tonnes/m³:
ρ = 0.0041 g/mm³ (1 kg / 1000 g) (1 tonne / 1000 kg) (1000 mm / m)³
ρ = 4.1 tonne/m³
Rounding to one significant figure, the density is 4 tonne/m³.
I believe the correct answer from the choices listed above is option C. The instrument that is <span>best suited for measuring the dimensions of a shoebox would be a ruler. A triple-beam balance is for measuring mass. A volumetric flask is for volume. A caliper is measuring lengths of small objects.</span>
Bode law, a planet<span> was believed to exist </span>between<span> .... An Astronomer's Account of the </span>Missing Planet Between<span> Mars and </span>Jupiter<span> as Interpreted </span>Jupiter<span> ·</span>Saturn<span> · Uranus · Neptune.</span>
No, he did not perform any work. Work is when you’re using energy which results in a force. Even though he was tired and sweaty, he did not move the boulder. So therefore he did not perform any work.