Answer:
177.1 L
Explanation:
The excersise can be solved, by the Ideal Gases Law.
P . V = n . R . T
In first step we need to determine the moles of gas:
We convert T° from, C° to K → 20°C + 273 = 293K
We convert P from mmHg to atm → 760 mmHg = 1atm
1Dm³ = 1L → 190L
We replace: 190 L . 1 atm = n . 0.082 . 293K
(190L.atm) / 0.082 . 293K = 7.91 moles.
We replace equation at STP conditions (1 atm and 273K)
V = (n . R .T) / P
V = (7.91 mol . 0.082 . 273K) / 1atm = 177.1 L
We can also make a rule of three:
At STP conditions 1 mol of gas occupies 22.4L
Then, 7.91 moles will be contained at (7.91 . 22.4) /1 = 177.1L
In Lewis dot structures, you draw the atom in the center and then surround the atom with its valence electrons. The Lewis structure for O is as shown in the attached diagram.
<h3>What is the Lewis structure of O ?</h3>
Lewis Structure of an atom of oxygen contains 6 electrons in the valence shell. Four valence electrons exist in lone pairs. It implies that oxygen atom must participate in two single bonds or one double bond in order to have an octet configuration.
A simplified representation of the valence shell electrons in a molecule is called Lewis Structure. It shows how electrons are arranged around individual atoms in the molecule.
To know more about Lewis structure, refer
brainly.com/question/1525249
#SPJ4
Answer:
76.9L
Explanation:
Based on the graph, whenever the temperature increases by 100K, the volume increases by 10L, so do 769/10
Xylene moles =\frac{17.12}{106.16×1000}=0.00016moles=
106.16×1000
17.12
=0.00016moles
Moles of CO_2 =\frac{56.77}{44.01×1000}=0.0013CO
2
=
44.01×1000
56.77
=0.0013
Moles of H_2O= =\frac{14.53}{18.02×1000}=0.0008H
2
O==
18.02×1000
14.53
=0.0008
Moles ratios
\frac{0.0013}{0.0008}=1.625
0.0008
0.0013
=1.625
\frac{0.0008}{0.0008}=1
0.0008
0.0008
=1
Hence molecular fomula
The empirical formula is C 4H 5.
The molecular formula C8H10