The answer is D: Products combine to produce new reactants... Hope this helps! :)
Answer:
state of matter
Explanation:
so take water for example, water has a melting point and a boiling point right? So if it's below 0 degrees, then it's in its solid phase. If the temperature is above 0 degrees, then the water starts to melt into its liquid phase. Then when the temperature is above 100 degrees, water starts to boil and become its gas phase. This is the same for all substances. The only difference is different substances have different melting and boiling points so the numbers will be different depending on your substance. hope this helped!
Answer:
1.811 g
Explanation:
The computation of the mass need to use to make the solution is shown below:
We know that molarity is

So,


= 0.031 moles
Now

where,
The Molecular weight of NaCl is 58.44 g/mole
And, the moles are 0.031 moles
So, the mass of NaCL is

= 1.811 g
We simply applied the above formulas
Answer:
9.63 L of NO
Explanation:
We'll begin by calculating the number of mole in 50.0 g of NH₄ClO₄. This can be obtained as follow:
Mass of NH₄ClO₄ = 50 g
Molar mass of NH₄ClO₄ = 14 + (4×1) + 35.5 + (16×4)
= 14 + 4 + 35.5 + 64
= 117.5 g/mol
Mole of NH₄ClO₄ =?
Mole = mass /molar mass
Mole of NH₄ClO₄ = 50/117.5
Mole of NH₄ClO₄ = 0.43 mole
Next, we shall determine the number of mole of NO produced by the reaction of 50 g (i.e 0.43 mole) of NH₄ClO₄. This can be obtained as follow:
3Al + 3NH₄ClO₄ –> Al₂O₃ + AlCl₃ + 3NO + 6H₂O
From the balanced equation above,
3 moles of NH₄ClO₄ reacted to produce 3 moles of NO.
Therefore, 0.43 mole of NH₄ClO₄ will also react to produce 0.43 mole of NO.
Finally, we shall determine the volume occupied by 0.43 mole of NO. This can be obtained as follow:
1 mole of NO = 22.4 L
Therefore,
0.43 mole of NO = 0.43 × 22.4
0.43 mole of NO = 9.63 L
Thus, 9.63 L of NO were obtained from the reaction.