Answer:
9.25
Explanation:
Let first find the moles of
and 
number of moles of
= 0.40 mol/L × 200 × 10⁻³L
= 0.08 mole
number of moles of
= 0.80 mol/L × 50 × 10⁻³L
= 0.04 mole
The equation for the reaction is expressed as:

The ICE Table is shown below as follows:

Initial (M) 0.08 0.04 0
Change (M) - 0.04 -0.04 + 0.04
Equilibrium (M) 0.04 0 0.04







for buffer solutions
since they are in the same solution


Answer:
Three product with are SO2, H2O and CuSO4
Explanation:
An aqueous solution in a 55 gallon (208 l drum), characterized by minimal buffering capacity, received 4kg of phenol and 1.5 kg of sodium phenate. What is the ph of the solution. The pka of phenol = 9.98. Mw of phenol and sodium phenate are 94 g/mol and 116 g/mol, respectively.
Volume of solution = 55 gallons = 208.2 L [ 1 gallon = 3.78 L]
moles of phenol = mass / molar mass = 4000 g / 94 = 42.55 moles
moles of sodium phenate = mass / molar mass = 1500 / 116 = 12.93 moles
pKa of phenol = 9.98
We know that the pH of buffer is calculated using Hendersen Hassalbalch's equation
pH = pKa + log [salt] / [acid]
volume is same for both the sodium phenate and phenol has we can directly take the moles of each in the formula
pH = 9.98 + log [12.93 / 42.55] = 9.46