1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddika [18.5K]
3 years ago
11

Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 300 kPa, and a velocity of 25 m/s. At the exit, the

temperature is 90°C and the pressure is 240 kPa. The pipe diameter is 0.1 m. Determine: (a) the mass flow rate of the refrigerant, in kg/s, (b) the velocity at the exit, in m/s, and (c) the rate of heat transfer between the pipe and its surroundings, in kW.
Engineering
1 answer:
salantis [7]3 years ago
3 0

Answer:

a) 2.42 kg/s

b) 37.20 m/s

c) 120.56 kW

Explanation:

Given that:

The fluid in the Refrigerant = R-134a

Diameter (d) = 0.1 m

In the Inlet:

Temperature T_1 = 40^0C

Pressure P_1= 300kPa

Velocity V_1 = 25 m/s

At the exit:

Temperature T_2 = 90^0C

Pressure P_2 = 240 kPa

From the  Table A-12 for Refrigerant R-134a at T_1 = 40^0C and P_1= 300kPa

Specific Volume v_1 = 0.0809 m^3/kg

From the  Table A-12 for Refrigerant R-134a at T_2 = 90^0C and P_2 = 240 kPa

Specific Volume v_2 = 0.12038 kJ/kg

Their corresponding Enthalpy h_1 and h_2 are as follows:

Enthalpy h_1  =284.05 kJ/kg

Enthalpy h_2 = 333 kJ/kg

a) The mass flow rate of the refrigerant can be calculated as :

m_1 = \frac{AV_1}{v_1}

m_1 = \frac{\frac{\pi (0.1)^2}{4}*25}{0.08089}

m_1 = 2.42 kg/s

b) The velocity at the exit point:

we knew that:

m=m_1 =m_2

∴

\frac{AV_1}{v_1} =\frac{AV_2}{v_2}

V_2 = \frac{v_2}{v_1} V_1

V_2 = \frac{0.12038}{0.08089} *25

V_2 = 37.20 m/s

c) Expression for calculating heat transfer (as long as there is no work that is said to be done and the pipe is horizontal) can be represented as:

Q_{cv}= m[(h_2-h_1)+\frac{1}{2}(V_2^2-V_1^2)]

Q_{cv}= 2.42*[(333.49-284.05)+\frac{1}{2}(37.20^2-25^2)]

Q_{cv}= 2.42*[49.44+379.42]

Q_{cv}= 119.6448kW+918.19W(\frac{1kW}{1000W} )

Q_{cv}= 119.6448kW+0.92 kW

Q_{cv} = 120.56 kW

You might be interested in
What is the function rule for the line? f(x)=−32x−2f(x)=−23x−2f(x)=32x−2f(x)=−32x+2A coordinate grid with x and y axis ranging f
murzikaleks [220]

Answer:

f(x)=23x−2

Explanation:

still trying to figure that out

7 0
3 years ago
An alloy is evaluated for potential creep deformation in a short-term laboratory experiment. The creep rate (ϵ˙) is found to be
cupoosta [38]

Answer:

Activation energy for creep in this temperature range is Q = 252.2 kJ/mol

Explanation:

To calculate the creep rate at a particular temperature

creep rate, \zeta_{\theta} = C \exp(\frac{-Q}{R \theta} )

Creep rate at 800⁰C, \zeta_{800} = C \exp(\frac{-Q}{R (800+273)} )

\zeta_{800} = C \exp(\frac{-Q}{1073R} )\\\zeta_{800} = 1 \% per hour =0.01\\

0.01 = C \exp(\frac{-Q}{1073R} ).........................(1)

Creep rate at 700⁰C

\zeta_{700} = C \exp(\frac{-Q}{R (700+273)} )

\zeta_{800} = C \exp(\frac{-Q}{973R} )\\\zeta_{800} = 5.5 * 10^{-2}  \% per hour =5.5 * 10^{-4}

5.5 * 10^{-4}  = C \exp(\frac{-Q}{1073R} ).................(2)

Divide equation (1) by equation (2)

\frac{0.01}{5.5 * 10^{-4} } = \exp[\frac{-Q}{1073R} -\frac{-Q}{973R} ]\\18.182= \exp[\frac{-Q}{1073R} +\frac{Q}{973R} ]\\R = 8.314\\18.182= \exp[\frac{-Q}{1073*8.314} +\frac{Q}{973*8.314} ]\\18.182= \exp[0.0000115 Q]\\

Take the natural log of both sides

ln 18.182= 0.0000115Q\\2.9004 = 0.0000115Q\\Q = 2.9004/0.0000115\\Q = 252211.49 J/mol\\Q = 252.2 kJ/mol

3 0
3 years ago
A large class with 1,000 students took a quiz consisting of ten questions. To get an A, students needed to get 9 or 10 questions
VMariaS [17]

Answer:

a. 0.11

b. 110 students

c. 50 students

d. 0.46

e. 460 students

f. 540 students

g. 0.96

Explanation:

(See attachment below)

a. Probability that a student got an A

To get an A, the student needs to get 9 or 10 questions right.

That means we want P(X≥9);

P(X>9) = P(9)+P(10)

= 0.06+0.05=0.11

b. How many students got an A on the quiz

Total students = 1000

Probability of getting A = 0.11 ---- Calculated from (a)

Number of students = 0.11 * 1000

Number of students = 110 students

So,the number of students that got A is 110

c. How many students did not miss a single question

For a student not to miss a single question, then that student scores a total of 10 out of possible 10

P(10) = 0.05

Total Students = 1000

Number of Students = 0.05 * 1000

Number of Students = 50 students

We see that 5

d. Probability that a student pass the quiz

To pass, a student needed to get at least 6 questions right.

So we want P(X>=6);

P(X>=) =P(6)+P(7)+P(8)+P(9)+P(10)

=0.08+0.12+0.15+0.06+0.05=0.46

So, the probability of a student passing the quiz is 0.46

e. Number of students that pass the quiz

Total students = 1000

Probability of passing the quiz = 0.46 ----- Calculated from (d)

Number of students = 0.46 * 1000

Number of students = 460 students

So,the number of students that passed the test is 460

f. Number of students that failed the quiz

Total students = 1000

Total students that passed = 460 ----- Calculated from (e)

Number of students that failed = 1000 - 460

Number of students that failed = 540

So,the number of students that failed is 540

g. Probability that a student got at least one question right

This means that we want to solve for P(X>=1)

Using the complement rule,

P(X>=1) = 1 - P(X<1)

P(X>=1) = 1 - P(X=0)

P(X>=1) = 1 - 0.04

P(X>=1) = 0.96

7 0
3 years ago
Write a Python program that does the following. Create a string that is a long series of words separated by spaces. The string i
dybincka [34]

Answer:

The code is attached.

Explanation:

I created a string s including 6 colors with spaces in between. Then I converted the string into a list x by using split() method. I used three different methods for removing elements from the list. These methods are remove(), pop() and del.

\\ Then I used methods append(), insert() and extend() for adding elements to the list.

\\ Finally I converted list into a string using join() and adding space in between the elements of the list.

4 0
4 years ago
A 0.25in diameter steel rod BC is securely attached between two identical 1in diameter copper rods (AB and CD). Find the torque
Helen [10]

Answer:

Tmax= 46.0 lb-in

Explanation:

Given:

- The diameter of the steel rod BC d1 = 0.25 in

- The diameter of the copper rod AB and CD d2 = 1 in

- Allowable shear stress of steel τ_s = 15ksi

- Allowable shear stress of copper τ_c = 12ksi

Find:

Find the torque T_max

Solution:

- The relation of allowable shear stress is given by:

                             τ = 16*T / pi*d^3

                             T = τ*pi*d^3 / 16

- Design Torque T for Copper rod:

                             T_c = τ_c*pi*d_c^3 / 16

                             T_c = 12*1000*pi*1^3 / 16

                             T_c = 2356.2 lb.in

- Design Torque T for Steel rod:

                             T_s = τ_s*pi*d_s^3 / 16

                             T_s = 15*1000*pi*0.25^3 / 16

                             T_s = 46.02 lb.in

- The design torque must conform to the allowable shear stress for both copper and steel. The maximum allowable would be:

                             T = min ( 2356.2 , 46.02 )

                             T = 46.02 lb-in

6 0
3 years ago
Other questions:
  • Not a characteristic property of ceramic material (a) high temperature stability (b) high mechanical strength (c) low elongation
    7·2 answers
  • You are comparing distillation column designs at 1 atm and 3 atm total pressure for a particular separation. You have the same f
    5·1 answer
  • The advantages of solar cells include all of the following, except a.moderate net energy yield b.little or no direct emissions o
    11·1 answer
  • Please answer question #2
    6·1 answer
  • A horse on the merry-go-round moves according to the equations r = 8 ft, u = (0.6t) rad, and z = (1.5 sin u) ft, where t is in s
    5·1 answer
  • A completely mixed activated-sludge process is being designed for a wastewater flow of 10,000 m3/d (2.64 mgd) using the kinetics
    6·1 answer
  • What does STP and NTP stands for in temperature measurement?
    15·1 answer
  • The pressure intensity at a point in a fluid is equal in all directions a.true b.false​
    12·1 answer
  • Im passed due someone help meeeeeee
    7·2 answers
  • The electrical panel schedules are located on EWR Plan number ___.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!