1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valina [46]
2 years ago
11

The project's criteria.

Engineering
1 answer:
Lena [83]2 years ago
8 0

Answer: design 4

Explanation: I got it right

You might be interested in
If the same type of thermoplastic polymer is being tensile tested and the strain rate is increased, it will: g
Serggg [28]

Answer:

It would break I think need to try it out

Explanation:

3 0
2 years ago
Scientific research techniques are used to analyze the effectiveness of political advertising. False True
miv72 [106K]

Answer:

correct me if i'm wrong but i think it's false

Explanation:

5 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
A rigid tank contains 1 kg of oxygen (O2) at p1 = 35 bar, T1 = 180 K. The gas is cooled until the temperature drops to 150 K. De
andreyandreev [35.5K]

Answer:

a. Volume = 13.36 x 10^-3 m³ Pressure = 29.17 bar  b. Volume = 14.06 x 10^-3 m³ Pressure = 22.5 bar

Explanation:

Mass of O₂ = 1kg, Pressure (P1) = 35bar, T1= 180K, T2= 150k Molecular weight of O₂ = 32kg/Kmol

Volume of tank and final pressure using a)Ideal Gas Equation and b) Redlich - Kwong Equation

a. PV=mRT

V = {1 x (8314/32) x 180}/(35 x 10⁵) = 13.36 x 10^-3

Since it is a rigid tank the volume of the tank must remain constant and hnece we can say

T2/T1 = P2/P1, solving for P2

P2 = (150/180) x 35 = 29.17bar

b. P1 = {RT1/(v1-b)} - {a/v1(v1+b)(√T1)}

where R, a and b are constants with the values of, R = 0.08314bar.m³/kmol.K, a = 17.22(m³/kmol)√k, b = 0.02197m³/kmol

solving for v1

35 = {(0.08314 x 180)/(v1 - 0.02197)} - {17.22/(v1)(v1 + 0.02197)(√180)}

35 = {14.96542/(v1-0.02197)} - {1.2835/v1(v1 + 0.02197)}

Using Trial method to find v1

for v1 = 0.5

Right hand side becomes =  {14.96542/(0.5-0.02197)} - {1.2835/0.5(0.5 + 0.02197)} = 31.30 ≠ Left hand side

for v1 = 0.4

Right hand side becomes =  {14.96542/(0.4-0.02197)} - {1.2835/0.4(0.4 + 0.02197)} = 39.58 ≠ Left hand side

for v1 = 0.45

Right hand side becomes =  {14.96542/(0.45-0.02197)} - {1.2835/0.45(0.45 + 0.02197)} = 34.96 ≅ 35

Specific Volume = 35 m³/kmol

V = m x Vspecific/M = (1 x 0.45)/32 = 14.06 x 10^-3 m³

For Pressure P2, we know that v2= v1

P2 = {RT2/(v2-b)} - {a/v2(v2+b)(√T2)} = {(0.08314 x 150)/(0.45 - 0.02197)} - {17.22/(0.45)(0.45 + 0.02197)(√150)} = 22.5 bar

3 0
3 years ago
What are primary and secondary super-heaters?
Maru [420]

Explanation:

Superheater has two types of parts which are:

  • The primary super-heater
  • The secondary super-heater

Primary super-heater is first heater which is passed by the steam after steam comes out of steam drum.

After steam is heated on super primary heater, then the steam is passed on secondary super-heater so to be heated again. Thus, on secondary super-heater, the steam formed is hottest steam among others.

Steam from secondary super-heater which becomes the superheated steam, flow to rotate the High-Pressure Turbine.

3 0
3 years ago
Other questions:
  • The correct statement about the lift and drag on an object is:_______
    7·2 answers
  • Does the army good 4 you
    15·1 answer
  • In many problems where the potential energy is considered between two objects, the potential energy is defined as zero when the
    8·1 answer
  • A string of ASCII characters has been converted to hexadecimal resulting in the following message: 4A EF 62 73 73 F4 E5 76 E5 Of
    6·1 answer
  • An inventor claims to have developed a power cycle operating between hot and cold reservoirs at 1175 K and 295 K, respectively,
    9·1 answer
  • Which of the following identifies one factor that causes conventional tillage to actually be good for the environment?
    7·1 answer
  • Chad is working on a design that uses the pressure of steam to control a valve in order to increase water pressure in showers. W
    5·1 answer
  • If you have 300 skittles in a bag and you need to have 28 percent yellow. How many yellow skittles would you have to make a mini
    11·1 answer
  • Which cod is the best whoever has the best awnser gets brainliest​
    12·1 answer
  • At a certain location, wind is blowing steadily at 7 m/s. Determine the mechanical energy of air per unit mass and the power gen
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!