Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
Answer:
Option b
Step-by-step explanation:
To write the searched equation we must modify the function f (x) = | x | in the following way:
1. Do y = f(x + 4)
This operation horizontally shifts the function f(x) = | x | by a factor of 4 units to the left on the x axis.
y = | x +4 |
2. Do 
This operation horizontally expands the function f (x) = | x | in a factor of 4 units. 
3. Do 
This operation vertically shifts the function f (x) = | x | by a factor of 4 units down on the y-axis.

4. After these transformations the function f(x) = | x | it looks like:

Therefore the correct option is option b. You can verify that your vertex is at point (-4, -4) by making f (-4)

Answer:
Step-by-step explanation:
x≠ n*π, where n is an integer
because x/π can not be an integer