Answer- 33.4 kJ
Explanation-
100 g H2O x (1mol/18g) = 5.5 mol
q=(5.5 mol)(6.01 KJ/mol)= 33.4 kJ
<span>If you look at the chlorine box, with the symbol Cl, you see the atomic mass is equal to 35.453 atomic mass units. This is the weighted average mass of chlorine, including its isotopes, as found in nature. This also means that one mole of chlorine atoms has a mass of 35.453 grams.</span>
<h3>
Answer:</h3>
2.51 mol Cu
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
1.51 × 10²⁴ atoms Cu
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
2.50747 mol Cu ≈ 2.51 mol Cu
Answer:
The temperature of a substance when the average kinetic energy of its particles increases and decreases when the average kinetic energy decreases.
Explanation:
Atoms and molecules are in constant motion. Kinetic energy is a form of energy, known as energy of motion. Kinetic energy is a form of energy, known as energy of motion. The kinetic energy of an object is that which is produced due to its movements, which depends on its mass (m) and speed (v).
Temperature refers to a quantity used to measure the kinetic energy of a system. That is, temperature is defined as an indicator of the average kinetic energy of the particles in a body.
So, since temperature is a measure of the speed with which they move, the higher the temperature the faster they move.
Finally, <u><em>the temperature of a substance when the average kinetic energy of its particles increases and decreases when the average kinetic energy decreases.</em></u>
C.) hydrogen bonding interactions.