The rate constant of first order reaction at 32. 3 °C is 0.343 /s must be less the 0. 543 at 25°C.
First-order reactions are very commonplace. we have already encountered examples of first-order reactions: the hydrolysis of aspirin and the reaction of t-butyl bromide with water to present t-butanol. every other reaction that famous obvious first-order kinetics is the hydrolysis of the anticancer drug cisplatin.
The value of ok suggests the equilibrium ratio of products to reactants. In an equilibrium combination both reactants and merchandise co-exist. big ok > 1 merchandise are k = 1 neither reactants nor products are desired.
Rate constant K₁ = 0. 543 /s
T₁ = 25°C
Activation energy Eₐ = 75. 9 k j/mol.
T₂ = 32. 3 °C.
K₂ =?
formula;
log K₂/K₁= Eₐ /2.303 R [1/T₁ - 1/T₂]
putting the value in the equation
K₂ = 0.343 /s
Hence, The rate constant of first order reaction at 32. 3 °C is 0.343 /s
The specific rate steady is the proportionality consistent touching on the fee of the reaction to the concentrations of reactants. The fee law and the specific charge consistent for any chemical reaction should be determined experimentally. The cost of the charge steady is temperature established.
Learn more about activation energy here:- brainly.com/question/26724488
#SPJ4
The correct Answer based on my calculations is C
I believe the answer is d
The three steps involve;
Step 1: Separation/expansion of the solute particles
Step 2: Separation/expansion of the solvent particles
Step 3; Combining the solute and solvent particles
The first two steps are usually endothermic. Step 3, nonetheless, can be either exothermic or endothermic and is significant in determining whether the dissolving process will be endothermic or exothermic.
It can be any row
Explanation:
An element with a valence electrons of 3 can be in any row on the periodic table.
The rows are the horizontal arrangement of elements on the periodic table.
Elements on the same row have the same energy level.
- The periodic table rows are called periods.
- It is only in the groups that we can find such element.
- Group 3 elements have 3 valence electrons.
- Since this group cuts through all the rows, therefore, elements with 3 valence electrons can be found in any row.
learn more:
Metalloids brainly.com/question/3023499
#learnwithBrainly