Answer: measures how quickly a system performs a process or transaction
Explanation:
Computer performance refers to how well a given computer system performs, which is estimated by its accuracy, efficiency and speed when completing a process or transaction.
A computer performance evaluation will assess a system's resources and outputs to make sure that it´s performing in the best possible way.
Some parameters of performance are latency, speed, throughput, and bandwidth.
Note: The matrix referred to in the question is: ![M = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]](https://tex.z-dn.net/?f=M%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%2F2%261%2F3%260%5C%5C1%2F2%261%2F3%260%5C%5C0%261%2F3%261%5Cend%7Barray%7D%5Cright%5D)
Answer:
a) [5/18, 5/18, 4/9]'
Explanation:
The adjacency matrix is ![M = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]](https://tex.z-dn.net/?f=M%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%2F2%261%2F3%260%5C%5C1%2F2%261%2F3%260%5C%5C0%261%2F3%261%5Cend%7Barray%7D%5Cright%5D)
To start the power iteration, let us start with an initial non zero approximation,
![X_o = \left[\begin{array}{ccc}1\\1\\1\end{array}\right]](https://tex.z-dn.net/?f=X_o%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C1%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
To get the rank vector for the first Iteration:

![X_1 = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]\left[\begin{array}{ccc}1\\1\\1\end{array}\right] \\\\X_1 = \left[\begin{array}{ccc}5/6\\5/6\\4/3\end{array}\right]\\](https://tex.z-dn.net/?f=X_1%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%2F2%261%2F3%260%5C%5C1%2F2%261%2F3%260%5C%5C0%261%2F3%261%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C1%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5CX_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%2F6%5C%5C5%2F6%5C%5C4%2F3%5Cend%7Barray%7D%5Cright%5D%5C%5C)
Multiplying the above matrix by 1/3
![X_1 = \left[\begin{array}{ccc}5/18\\5/18\\4/9\end{array}\right]](https://tex.z-dn.net/?f=X_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%2F18%5C%5C5%2F18%5C%5C4%2F9%5Cend%7Barray%7D%5Cright%5D)
Answer:
The probability that among three randomly selected Internet users, at least one is more careful about personal information when using a public Wi-Fi hotspot is 0.964
If the survey subjects <em>volunteered</em> to respond , then those with the strongest opinions are most likely respond. The survey sample is then not randomly selected, the survey may have a <em>response bias.</em>
Explanation:
Let P(at least one is more careful about personal information when using a public Wi-Fi hotspot) denote the probability that among three randomly selected Internet users, at least one is more careful about personal information when using a public Wi-Fi hotspot, then we have the equation
P(at least one is more careful about personal information when using a public Wi-Fi hotspot) = 1 - P(none of the selected users is more careful about personal information when using a public Wi-Fi hotspot)
- If 67% of Internet users are more careful about personal information when using a public Wi-Fi, then 33% of them are not.
P(none of the selected users is more careful about personal information when using a public Wi-Fi hotspot) =
≈ 0.036
P(at least one is more careful about personal information when using a public Wi-Fi hotspot) = 1 - 0.036 = 0.964