Answer:
The work done to lift the counterweight equals the potential energy acquired
Explanation:
since this is vertically applied force on the counterweight, and the distance the force is displacing the counterweight is in the same direction as the applied force, it equals the gained potential energy
Answer:
v = 19.6 m/s.
Explanation:
Given that,
The radius of the circle, r = 5 m
The time period of the ball, T = 1.6s
We need to find the ball's tangential velocity.
The formula for the tangential velocity is given by :

Putting all the values in the above formula

So, the tangential velocity of the ball is 19.6 m/s. Hence, the correct option is (c).
Answer:
A ) SOLID SPHERE
Explanation:
Moment of inertia of solid sphere = 2/5 M R²
= M K² , K is called radius of gyration
K = √2/5 R
Moment of inertia of solid cylinder = 1/2 M R²
= M K² , K is called radius of gyration
K = 1 /√2 R
Moment of inertia of solid sphere = M R²
= M K² , K is called radius of gyration
K = R
For rolling on inclined plane , acceleration
a = 
Putting the value of K for solid sphere
a for solid sphere
a = g sinθ / ( 1 +2/5)
a = .714 g sinθ
Putting the value of K for solid cylinder
a for solid cylinder
a = g sinθ / ( 1 +1/2)
a = .666 g sinθ
Putting the value of K for hollow pipe
a for hollow pipe
a = g sinθ / ( 1 +1 )
a = . 5 g sinθ
So we see that acceleration a for solid sphere is greatest and a for hollow pipe is the least. Hence solid sphere will reach the bottom earliest and hollow pipe will reach the bottom the latest.
Answer:
B is the answers for the question
Explanation:
please give me brainlest
Answer:
The greatest force of gravity on the ball will occur at the point when the ball is near to hit the ground
Explanation:
We know that the earth's center attracts everything towards its center with an acceleration of 9.8 m/s² so it simply means that the change in velocity must occur to produce acceleration. When the ball comes towards the earth, its speed continuously increases and it is at maximum level when it is about to hit the ground so this is the point where gravitational force is maximum.
I hope this helps ^_^