Answer:
C. Replacing one gas by another under the same conditions, has no effect on pressure.
Explanation:
Ideal gas:
A gas is treated as an ideal gas if temperature is high and pressure is low.
Kinetic energy for ideal gas given as

So when temperature of gas is increases then Average molecular kinetic energy will also increases.
The size of molecule is negligible as compare to the dimension of container. It mean that volume occupied by molecule is less as compare to the volume of container.
The between molecules is perfectly elastic.
Ideal gas equation
P V = m R T
So the option C is not always true.
Ions are particles formed when an atom of an element looses or gains electrons to attain a stable configuration.They are either positively charged (cations) or negatively charged (anions). Ionic crystals consists of ions bound together by electrostatic attraction forming a regular arrangement, geometric structure called crystal lattice. In an ionic solid the ions are held by strong attractive forces (tightly bound) and cannot move from their positions in the crystal structure and therefore, do not conduct electricity.
Answer: The value of x is -6.
Explanation:
To calculate the value of 'x', we need to solve each function happening inthe equation.
The equation provided to us is 
To solve this, we will multiply 4x with 2 and then subtract the like terms and finally, we evaluate the value of 'x'.

Hence, the value of x will be -6.
Answer:
t = 23.9nS
Explanation:
given :
Area A= 10 cm by 2 cm => 2 x 10^-2m x 10 x 10^-2m
distance d= 1mm=> 0.001
resistor R= 975 ohm
Capacitance can be calculated through the following formula,
C = (ε0 x A )/d
C = (8.85 x 10^-12 x (2 x 10^-2 x 10 x 10^-2))/0.001
C = 17.7 x 10^-12 (pico 'p' = 10^-12)
C = 17.7pF
the voltage between two plates is related to time, There we use the following formula of the final voltage
Vc = Vx (1-e^-(t/CR))
75 = 100 x (1-e^-(t/CR))
75/100 = (1-e^-(t/CR))
.75 = (1-e^-(t/CR))
.75 -1 = -e^-(t/CR)
-0.25 = -e^-(t/CR) --->(cancelling out the negative sign)
e^-(t/CR) = 0.25
in order to remove the exponent, take logs on both sides
-t/CR = ln (0.25)
t/CR = -ln(0.25)
t = -CR x ln (0.25)
t = -(17.7 x 10^-12 x 975) x (-1.38629)
t = 23.9 x
t = 23.9ns
Thus, it took 23.9ns for the potential difference between the deflection plates to reach 75 volts
Things that stretch or compress store elastic potential energy