Answer : Capacitors
Explanation : Capacitors are normally placed on transmission or distribution lines when to reduce inductive reactance.
This is because it enhances electromechanical and voltage stability , limit voltage dips at network nodes and reduces the power loss.
So, we can say that inductive reactance normally replace by the capacitors.
Answer:
wallah i don't understand anything with my stoopid brain
Explanation:
Answer:
final displacement lf = 0.39 m
Explanation:
from change in momentum equation:
![\delta p = m \sqrt(2g * y/x)* [\sqrt li + \sqrt lf]](https://tex.z-dn.net/?f=%5Cdelta%20p%20%3D%20m%20%5Csqrt%282g%20%2A%20y%2Fx%29%2A%20%5B%5Csqrt%20li%20%2B%20%5Csqrt%20lf%5D)
given: m = 0.4kg, y/x = 19/85, li = 1.9 m,
\delta p = 1.27 kg*m/s.
putting all value to get the final displacement value
![1.27 = 0.4\sqrt(2*9.81 *(19/85))* [\sqrt 1.9 + \sqrt lf]](https://tex.z-dn.net/?f=1.27%20%3D%200.4%5Csqrt%282%2A9.81%20%2A%2819%2F85%29%29%2A%20%5B%5Csqrt%201.9%20%2B%20%5Csqrt%20lf%5D)
final displacement lf = 0.39 m
This equation is one of the most useful in classical physics. It is a concise statement of Isaac Newton's<span> Second Law of Motion, holding both the proportions and vectors of the Second Law. It translates as: The net force on an object is </span>equal<span> to the </span>mass<span>of the object multiplied by the </span>acceleration<span> of the object.</span>
By the use of a Accumulators