The answer is C, Extinction.
If there was no diversity then a single sickness could wipe out a whole population, but if the population was more varied theres a higher chance someone is more resistant to the sickness and could carry on the species life
Mercury Venus mars Jupiter Saturn
The chemical behavior of an atoms is determine by the formation or destruction of chemical bonds. The chemical bonds are the result of the interaction of the electrons of the atoms. Chemical properties of the atoms are given by how attached are the shell electrons attached to the nucleus and how they interact with other atoms. Chemical changes are the result of exchange valence electrons of the atoms. So, <span>the answer is the atomic particle that determines the chemical behavior of an atom is the electron, because it is the particle that is active in chemical bonding.</span>
The choices can be found elsewhere and as follows:
a. mass-mass problems
<span>b. mass-volume problems </span>
<span>c. mass-particle problems </span>
<span>d. volume-volume problems
</span>
I believe the correct answer is option D. It is volume-volume problems that does not require the use of molar mass. <span> Here you are dealing with molarities and volumes to determine concentrations. Molar mass is not part of any calculations.</span>
I think this is what you're after:
Cs(g) → Cs^+ + e⁻ ΔHIP = 375.7 kJ mol^-1 [1]
Convert to J and divide by the Avogadro Const to give E in J per photon
E = 375700/6.022×10^23 = 6.239×10^-19 J
Plank relationship E = h×ν E in J ν = frequency (Hz s-1)
Planck constant h = 6.626×10^-34 J s
6.239×10^-19 = (6.626×10^-34)ν
ν = 9.42×10^14 s^-1 (Hz)
IP are usually given in ev Cs 3.894 eV
<span>E = 3.894×1.60×10^-19 = 6.230×10^-19 J per photon </span>