A) 5000 m²
b) A(x) = x(200 -2x)
c) 0 < x < 100
Step-by-step explanation:
b) The remaining fence, after the two sides of length x are fenced, is 200-2x. That is the length of the side parallel to the building. The product of the lengths parallel and perpendicular to the building is the area of the playground:
A(x) = x(200 -2x)
__
a) A(50) = 50(200 -2·50) = 50·100 = 5000 . . . . m²
__
c) The equation makes no sense if either length (x or 200-2x) is negative, so a reasonable domain is (0, 100). For x=0 or x=100, the playground area is zero, so we're not concerned with those cases, either. Those endpoints could be included in the domain if you like.
Answer:
(x+1)(x-6)
Step-by-step explanation:
Answer:
3rd option: 60 degrees
Step-by-step explanation:
We can see in the diagram that the angle on C is a supplementary angle, which means that the sum of 135 and internal angle will be equal to 180 degrees.
Let x be the internal angle,
Then
x+135 = 180
x = 180-135
x = 45 degrees
So now we know that two interior angles of the triangle.
Also we know that sum of all internal angles of triangle is 180 degrees.
Using the same postulate:
A+B+C = 180
75 + B + 45 = 180
120+B = 180
B = 180 - 120
B = 60 degrees
So,
third option is the correct answer ..
This is solved by setting up two equations and then using one to answer the other.
The first step (use what is given to set up the two separate equations)
We are looking for two numbers, let us call them X and Y.
We are told that X + Y = 59
We are also told that (9 more than) 9+ (4times the smaller number) 4Y is the bigger number X
Then we combine that into 9+4Y=X
so we now have two separate equations and we can use one to solve the other. Everywhere we have X in the first equation, we will fill in with the second equation
(9+4Y) +Y = 59 [then combine like terms]
9+5Y=59 [subtract 9 from both sides]
5Y=50 [divide both sides by 5 to isolate the Y]
Y=10 [now plug this into either equation to solve for X]
9+4(10)=X
9+40=X
<u><em>49=X and 10=Y</em></u>
Answer:
15
*ignore this answers have to be a minimum of 20 characters.