Answer:
I = 5[amp]
Explanation:
Electrical power is defined as the product of voltage by current.

where:
P = power = 1150 [W]
V = voltage = 230 [V]
I = current [amp]
Now replacing:
![1150=230*I\\I=1150/230\\I=5[amp]](https://tex.z-dn.net/?f=1150%3D230%2AI%5C%5CI%3D1150%2F230%5C%5CI%3D5%5Bamp%5D)
A 15 [amp] fuse must be used. Always the fuse must be larger than the operating current, to protect the equipment from very high currents. above 15 [amp]
Answer:
185 N
Explanation:
Sum of forces in the x direction:
Fₓ = -(80 N cos 75°) + (120 N cos 60°)
Fₓ = 39.3 N
Sum of forces in the y direction:
Fᵧ = (80 N sin 75°) + (120 N sin 60°)
Fᵧ = 181.2 N
The magnitude of the net force is:
F = √(Fₓ² + Fᵧ²)
F = √((39.3 N)² + (181.2 N)²)
F = 185 N
Answer: GLOMERULUS
Explanation:
The specialized capillary bed responsible for the pressure that drives filtration is the
GLOMERULUS.
The kidney is an organ responsible for the excretion of nitrogenous wastes from the human body and osmoregulation of the blood and body fluids. The structure which is responsible for formation of urine is the nephron( kidney tubule). The GLOMERULUS are found within the Bowman's capsule of the nephrons. It is made up of specialised bundle of capillary beds which are the only capillary beds that are not surrounded by interstitial fluid in the body. In the glomerulus, blood pressure is high because an arteriole enters and exists the capillary beds which is responsible for the pressure that drives filtration.
A five pushing and letting go of the yoyo
Answer:
a) 
b) 
Explanation:
Given:
- mass of the body,

- mass of the tyre,

- length of hanging of tyre,

- distance run by the body,

- acceleration of the body,

(a)
Using the equation of motion :
..............................(1)
where:
v=final velocity of the body
u=initial velocity of the body
here, since the body starts from rest state:

putting the values in eq. (1)


Now, the momentum of the body just before the jump onto the tyre will be:



Now using the conservation on momentum, the momentum just before climbing on the tyre will be equal to the momentum just after climbing on it.



(b)
Now, from the case of a swinging pendulum we know that the kinetic energy which is maximum at the vertical position of the pendulum gets completely converted into the potential energy at the maximum height.
So,



above the normal hanging position.