Answer:
There are 40 electrons in one atom of Zirconium.
Explanation:
Note: The word is not zicronium, it is Zirconium.
Answer:
(E) changing temperature
Explanation:
Consider the following reversible balanced reaction:
aA+bB⇋cC+dD
If we know the molar concentrations of each of the reaction species, we can find the value of Kc using the relationship:
Kc = ([C]^c * [D]^d) / ([A]^a * [B]^b)
where:
[C] and [D] are the concentrations of the products in the equilibrium; [A] and [B] reagent concentrations in equilibrium; already; b; c and d are the stoichiometric coefficients of the balanced equation. Concentrations are commonly expressed in molarity, which has units of moles / 1
There are some important things to remember when calculating Kc:
- <em>Kc is a constant for a specific reaction at a specific temperature</em>. If you change the reaction temperature, then Kc also changes
- Pure solids and liquids, including solvents, are not considered for equilibrium expression.
- The reaction must be balanced with the written coefficients as the minimum possible integer value in order to obtain the correct value of Kc
Since there is so little information given, I will assume that we are at STP and i can use the conversion factor at STP--->> 22.4 Liters= 1 mol of gas
before we use this conversion, we need to convert the grams to moles using the molar mass of the molecule.
molar mass of Cl₂= 35.5 x 2= 71.0 g/ mol
177.3 g (1 mol/ 71.0 g)= 2.50 mol Cl₂
then we use the conversion to get the volume
2.50 mol Cl₂ (22.4 Liters/ 1 mol)= 55.9 Liters
Answer:
1.2 × 10⁴ cal
Explanation:
Given data
- Initial temperature: 80 °C
We can calculate the heat released by the water (
) when it cools using the following expression.

where
c is the specific heat capacity of water (1 cal/g.°C)

According to the law of conservation of energy, the sum of the heat released by the water (
) and the heat absorbed by the reaction (
) is zero.
