Answer:
The new acceleration becomes twice the pervious acceleration.
Explanation:
Given that,
Mass of the rock, m = 3 kg
Force, F = 1 N
We know that the force acting on an object is given by :
F = ma
a is acceleration of the rock
Put m = 3 kg and F = 1N,

If the force is doubled, F' = 2 N
So,
F'=ma'

So, the new acceleration becomes twice the initial acceleration.
Answer:
35.9 ml
Explanation:
Start with the balanced equation:
3CuCl2(aq)+2Na3PO4(aq)→Cu3(PO4)2(s)+6NaCl(aq)
This tells us that 3 moles of CuCI2 react with 2 moles Na3PO4-
∴ 1 mole CuCl2 will react with 2/3 moles Na3PO4
We know that concentration = moles/volume i.e:
c= n/v
∴n=c×v
∴nCuCl2=0.107×91.01000=9.737×10−3
I divided by 1000 to convert ml to L
∴nNa3PO4=9.737×10−3×23=6.491×10−3
v=nc=6.491×10−30.181=35.86×10−3L
∴v=35.86ml
Answer:
hope this helps
Explanation:
The atoms of hydrogen have smaller mass than oxygen. Thus their speeds have to higher in order to produce the same average kinetic energies.
Explanation:
Let us assume that total mass of the solution is 100 g. And, as it is given that acetic acid solution is 12% by mass which means that mass of acetic acid is 12 g and 88 g is the water.
Now, calculate the number of moles of acetic acid as its molar mass is 60 g/mol.
No. of moles =
= 
= 0.2 mol
Molarity of acetic acid is calculated as follows.
Density = 
1 g/ml = 
volume = 100 ml
Hence, molarity = 
= 
= 2 mol/l
As reaction equation for the given reaction is as follows.

So, moles of NaOH = moles of acetic acid
Let us suppose that moles of NaOH are "x".
(as 1 L = 1000 ml)
x = 20 L
Thus, we can conclude that volume of NaOH required is 20 ml.
Answer:
(a): 2,300 kilograms
(b): 0.005 kilograms
(c): 2.3 × 10^-5 kilograms
(d): 155 kilograms
Explanation:
Formulas:
(a); divide the mass value by 1000
(b); divide the mass value by 1e+6
(c); divide the mass value by 1e+9
(d); multiply the mass value by 1000