Answer:
monomers
Explanation:
Thousands of molecules are called monomers
Calculate the root mean square velocity of nitrogen molecules at 25°C.
297 m/s
149 m/s
515 m/s
729 m/s
Answer:
Mass of sodium chloride decomposed = 24.54 g
Explanation:
Given data:
Mass of sodium chloride decomposed = ?
Mass of chlorine gas formed = 15 g
Solution:
Chemical equation:
2NaCl → 2Na + Cl₂
Number of moles of Cl₂:
Number of moles = mass/molar mass
Number of moles = 15 g/ 71 g/mol
Number of moles = 0.21 mol
Now we will compare the moles of Cl₂ with NaCl from balance chemical equation.
Cl₂ : NaCl
1 : 2
0.21 : 2×0.21 = 0.42 mol
Mass of Sodium chloride decompose:
Mass = number of moles × molar mass
Mass = 0.42 mol × 58.44 g/mol
Mass = 24.54 g
This problem is to use the Claussius-Clapeyron Equation, which is:
ln [p2 / p1] = ΔH/R [1/T2 - 1/T1]
Where p2 and p1 and vapor pressure at estates 2 and 1
ΔH is the enthalpy of vaporization
R is the universal constant of gases = 8.314 J / mol*K
T2 and T1 are the temperatures at the estates 2 and 1.
The normal boiling point => 1 atm (the pressure of the atmosphere at sea level) = 101,325 kPa
Then p2 = 101.325 kPa
T2 = ?
p1 = 54.0 kPa
T1 = 57.8 °C + 273.15K = 330.95 K
ΔH = 33.05 kJ/mol = 33,050 J/mol
=> ln [101.325/54.0] = [ (33,050 J/mol) / (8.314 J/mol*K) ] * [1/x - 1/330.95]
=> 0.629349 = 3975.22 [1/x - 1/330.95] = > 1/x = 0.000157 + 1/330.95 = 0.003179
=> x = 314.6 K => 314.6 - 273.15 = 41.5°C
Answer: 41.5 °C
Answer:
m = 50.74 kg
Explanation:
We have,
Initial temperature of water is 20 degrees Celsius
Final temperature of water is 46.6 degrees Celsius
Heat absorbed is 5650 J
It is required to find the mass of the sample. The heat absorbed is given by the formula ad follows :

c is specific heat of water, c = 4.186 J/g°C
So,

So, the mass of the sample is 50.74 kg.