Answer:
a) AgNO3 + KI → AgI + KNO3
b) Ba(OH)2 + 2HNO3 → Ba(NO3)2 + 2H2O
c) 2Na3PO4 + 3Ni(NO3)2 → Ni3(PO4)2 + 6NaNO3
d) 2Al(OH)3 + 3H2SO4 → Al2(SO4)3 + 6H2O
Explanation:
a) AgNO3 + KI → Ag+ + NO3- + K+ + I-
Ag+ + NO3- + K+ + I- → AgI + KNO3
AgNO3 + KI → AgI + KNO3
b) Ba(OH)2 + 2HNO3 → Ba^2+ + 2OH- + 2H+ + 2NO3-
Ba^2+ + 2OH- + 2H+ + 2NO3- → Ba(NO3)2 + 2H2O
Ba(OH)2 + 2HNO3 → Ba(NO3)2 + 2H2O
c) 2Na3PO4 + 3Ni(NO3)2 → 6Na+ + 2PO4^3- + 3Ni^2+ + 6NO3-
6Na+ + 2PO4^3- + 3Ni^2+ + 6NO3- → Ni3(PO4)2 + 6NaNO3
2Na3PO4 + 3Ni(NO3)2 → Ni3(PO4)2 + 6NaNO3
d) 2Al(OH)3 + 3H2SO4 → 2Al^3+ + 6OH- + 6H+ + 3SO4^2-
2Al^3+ + 3OH- + 3H+ + 3SO4^2- → Al2(SO4)3 + 6H2O
2Al(OH)3 + 3H2SO4 → Al2(SO4)3 + 6H2O
Hello there!
Sedimentary rocks are formed due to layers so the answer is A.
Best wishes
-HuronGirl
Answer: a) 
acid : hydronium ion
base : methoxide ion
conjugate acid : methanol
conjugate base: water
b) 
acid : hydrogen chloride
base : ethoxide ion
conjugate acid : ethanol
conjugate base: chloride ion
c) 
acid : methanol
base : amide ion
conjugate acid : ammonia
conjugate base: methoxide ion
Explanation:
According to the Bronsted-Lowry conjugate acid-base theory, an acid is defined as a substance which looses donates protons and thus forming conjugate base and a base is defined as a substance which accepts protons and thus forming conjugate acid.
The species accepting a proton is considered as a base and after accepting a proton, it forms a conjugate acid.
The species losing a proton is considered as an acid and after loosing a proton, it forms a conjugate base
For the given chemical equation:
a) 
acid : hydronium ion
base : methoxide ion
conjugate acid : methanol
conjugate base: water
b) 
acid : hydrogen chloride
base : ethoxide ion
conjugate acid : ethanol
conjugate base: chloride ion
c) 
acid : methanol
base : amide ion
conjugate acid : ammonia
conjugate base: methoxide ion
.
Explanation:
The shapes and relative energies of the orbitals s,p,d and f orbitals are given by the principal quantum number and the azimuthal quantum number.
The principal quantum number gives the main energy level and the azimuthal quantum number denotes the shape of the orbitals.
- For the principal quantum number, they represent the energy levels in which the orbital is located or the average distance of the orbital from the nucleus. It takes the number n = 1,2,3,4,5,6,7......
- The azimuthal quantum number(L) shows the shape of the orbitals in subshells accommodating electrons. The number of possible shapes is limited by the the principal quantum number.
L Name of orbital shape of orbital
0 s spherical
1 p dumb-bell
2 d double dumb-bell
3 f complex
Principal Azimuthal Orbital
Quantum Quantum Designation of
Number (N) Number(l) Sublevel
1 0 1s
2 0 2s
1 2p
3 0 3s
1 3p
2 3d
4 0 4s
1 4p
2 4d
3 4f
Learn more:
Atomic orbitals brainly.com/question/9514863
#learnwithBrainly
Measure the brightness of a star through two filters and compare the ratio of red to blue light.