Answer:
Explanation:
In this problem, the temperature stays constant. The volume and pressure change, so we use Boyle's Law. This states that the pressure of a gas is inversely proportional to the volume. The formula is:
Now we can substitute any known values into the formula.
Originally, the gas has a volume of 25.0 liters and a pressure of 2.05 atmospheres.
The volume is decreased to 14.5 liters, but the pressure is unknown.
Since we are solving for the new pressure, or P₂, we must isolate the variable. It is being multiplied by 14.5 liters and the inverse of multiplication is division. Divide both sides by 14.5 L .
The units of liters cancel.
The original values of volume and pressure have 3 significant figures, so our answer must have the same.
For the number we found, that is the hundredth place.
The 4 in the thousandth place (in bold above) tells us to leave the 3 in the hundredth place.
The new pressure is approximately <u>3.53 atmospheres.</u>
Hey there!
325 mL in liters:
325 / 1000 => 0.325 L
1 mole ( Ne ) ------------- 22.4 L ( at STP )
moles ( Ne ) ------------ 0.325 L
moles Ne = 0.325 * 1 / 22.4
moles Ne = 0.325 / 22.4
moles Ne = 0.0145 moles
hope this helps!
0.300 M IKI represents the
concentration which is in molarity of a potassium iodide solution. This means
that for every liter of solution there are 0.300 moles of potassium iodide. Knowing
that molarity is a ratio of solute to solution.
By using a conversion factor:
100 ml x (1L / 1000 mL) x (0.300
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 4.98 g
Therefore, in the first
conversion by simply converting the unit of volume to liter, Molarity is in L
where the volume is in liters. The next step is converted in moles from volume
by using molarity as a conversion factor which is similar to how density can be
used to convert between volume and mass. After converting to moles it is simply
used as molar mass of Kl which is obtained from periodic table to convert from
mole to grams.
In order to get the grams of IKI
to create a 100 mL solution of 0.600 M IKI, use the same formula as above:
100 ml x (1L / 1000 mL) x (0.600
mol Kl / 1 L) x (166.0g / 1 mol Kl) = 9.96 g
An atom is the smallest part of all matter.