Answer:

Explanation:
Given data

To find
Magnitude of the net magnetic field B
Solution
The magnitude of the net magnetic field can be find as:

Answer = 330 m/s
The wave equation is as follows:
Wave speed = wavelength x frequency
The known values are:
Wavelength = 3m
Frequency = 110 Hz
Substitute the known values into the wave equation to find the wave speed.
Wave speed = 3 x 110
Wave speed = 330 m/s
Refer to the figure below.
R = resistance.
Case 1:
The voltage source is V₁ and the current is 10 mA. Therefore
V₁ = (10 mA)R
Case 2:
The voltage source is V₂ and the current is 8 mA. Therefore
V₂ = (8 mA)R
Case 3:
The voltage across the resistance is V₁ - V₂. Therefore the current I is given by
V₁ - V₂ = IR
10R - 8R = (I mA)R
2 = I
The current is 2 mA.
Answer: 2 mA
Answer:
A.The spring constant for B is one quarter of the spring constant for A.
Explanation:
If spring A oscillates at twice the frequency of spring B, and period is frequency inverted. It means spring B has a period twice of spring A's.

As
, and the 2 springs have the same mass




So A.The spring constant for B is one quarter of the spring constant for A. is the correct answer.
The velocity when function p(t)=11 is 8 .
According to the question
The position of a car at time t represented by function :
Now,
When function p(t) = 11 , t will be
11 = t²+2t-4
0 = t² + 2t - 15
or
t² +2t-15 = 0
t² +(5-3)t-15 = 0
t² +5t-3t-15 = 0
t(t+5)-3(t+5) = 0
(t-3)(t+5) = 0
t = 3 , -5
as t cannot be -ve as given ( t≥0)
so,
t = 3
Now,
the velocity when p(t)=11
As we know velocity =
therefore to get the value of velocity from function p(t)
we have to differentiate the function with respect to time
v(t) = 2t + 2
where v(t) = velocity at that time
as t = 3 for p(t)=11
so ,
v(t) = 2t + 2
v(t) = 2*3 + 2
v(t) = 8
Hence, the velocity when function p(t)=11 is 8 .
To know more about function here:
brainly.com/question/12431044
#SPJ4