To answer the two questions, we need to know two important equations involving centripetal movement:
v = ωr (ω represents angular velocity <u>in radians</u>)
a = 
Let's apply the first equation to question a:
v = ωr
v = ((1800*2π) / 60) * 0.26
Wait. 2π? 0.26? 60? Let's break down why these numbers are written differently. In order to use the equation v = ωr, it is important that the units of ω is in radians. Since one revolution is equivalent to 2π radians, we can easily do the conversion from revolutions to radians by multiplying it by 2π. As for 0.26, note that the question asks for the units to be m/s. Since we need meters, we simply convert 26 cm, our radius, into meters. The revolutions is also given in revs/min, and we need to convert it into revs/sec so that we can get our final units correct. As a result, we divide the rate by 60 to convert minutes into seconds.
Back to the equation:
v = ((1800*2π)/60) * 0.26
v = (1800*2(3.14)/60) * 0.26
v = (11304/60) * 0.26
v = 188.4 * 0.26
v = 48.984
v = 49 (m/s)
Now that we know the linear velocity, we can find the centripetal acceleration:
a = 
a = 
a = 9234.6 (m/
)
Wow! That's fast!
<u>We now have our answers for a and b:</u>
a. 49 (m/s)
b. 9.2 *
(m/
)
If you have any questions on how I got to these answers, just ask!
- breezyツ
Efficiency = (Wanted) energy out ÷ energy in × 100
Energy in = 400J
Wanted Energy out = 240J
Energy cannot be used up, only transferred, so the remaining energy is most likely to be transferred into unwanted energy (loss of energy) such as heat energy.
Efficiency = 240 ÷ 400 × 100
Efficiency = 0.6 × 100
Efficiency = 60%
The velocity of shortening refers to the speed of the contraction from
the muscle shortening while lifting a load. The relationship between the
resistance and velocity of shortening is inverse. The greater the
resistance, the shorter the velocity of shortening and the smaller the
resistance, the larger the velocity of shortening.
Hopefully this help :)
Answer:
Well, newer telephone circuits built during the last decade are based on the digital transmission, not on the analog transmission. So it's the digital transmission circuit that has made the higher quality. Digital circuits converts the voice signals into the binary codes which is then translated again into the voice signal at the receiving end.
The answer is false.
Explanation: