Answer:
16200 J
Explanation:
t = Time the battery is on = 60 hours
I = Current = 
Average voltage

Energy is given by



The energy delivered in the given time is 16200 J
Solution: From the given question, we shall find the vector quantity among the
(A) Time , (B) Velocity, (C) Distance , (D) Speed
Concept: <u>Vector Quantity: </u>All those physical quantities which have magnitude as well as specific directions, are called Vector Quantities.
Here, Time, Distance and Speed have only magnitude but have no directions so they will be scalar quantities.
Now, <u>Velocity:</u> It is defined as the change in displacement per unit time. Since the change in the displacement will be in particular direction only. Hence, velocity will be the vector quantity.
Hence, the option (B) Velocity will be the correct option.
Answer:
0.000003782 m
0.000001891 m
0.000001197125 m
Explanation:
= Wavelength = 248 nm
D = Diameter of beam = 1 cm
f = Focal length = 0.625 cm
The angle is given by

The width is given by

The required width is 0.000003782 m
Minimum resolvable line separation is given by

The minimum resolvable line separation between adjacent lines is 0.000001891 m
when 

The new minimum resolvable line separation between adjacent lines is

Answer:
According to Archimedes principle the upthrust on the body is equal to the weight of the water displaced by the body. ... Here, the mass would be the net difference in the weight of the object.
Answer:
0.125 m
Explanation:
In this problem, we have:
v = 0.50 m/s is the average velocity of the wave
T = 0.25 s is the period of the wave
We can find the frequency of the wave, which is equal to the reciprocal of the period:

The problem is asking us to find the distance between two crests of the wave: this is equivalent to the wavelength. The wavelength is related to the average velocity and the frequency by the formula:

Substituting the numerical values, we find
