Answer:
a) 2.5 m/s²
b) 6.12 m/s
Explanation:
Tension of rope = T = 356N
Weight of material = W = 478 N
Distance from the ground = s = 7.5 m
Acceleration due to gravity = g = 9.81 m/s²
Mass of material = m = 478/9.81 = 48.72
Final velocity before the bundle hits the ground = v
Initial velocity = u = 0
Acceleration experienced by the material when being lowered = a
a) W-T = ma
⇒478-356 = 48.72×a

⇒a = 2.5 m/s²
∴ Acceleration achieved by the material is 2.5 m/s²
b) v²-u² = 2as
⇒v²-0 = 2×2.5×7.5
⇒v² = 37.5
⇒v = 6.12 m/s
∴ Velocity of the material before hitting the ground is 6.12 m/s
Answer:

Explanation:
The elastic potential energy of a spring is given by
, where
is the spring constant of the spring and
is displacement from point of equilibrium.
When released, this potential energy will be converted into kinetic energy. Kinetic energy is given by
, where
is the mass of the object and
is the object's velocity.
Thus, we have:

Substituting given values, we get:

A. The particles are packed more tightly in materials with more density which causes the vibrations to bounce of the partials more rapidly which makes them go faster
The spectrum of light from the moon should very strongly resemble the spectrum of sunlight. The reason is that any light from the moon started out from the sun. Any difference in their spectra is only due to the moon absorbing more of some wavelengths and less of others. But since the moon appears colorless gray, we don't expect any particular colors to be strongly absorbed, otherwise the moon would look to be the colors of the light that's left.
This is kinda confusing. I wish u just to a screenshot of the problem but here goes...
Forest at highest latitudes- Hardwood trees/deer, squirrel, foxes
Praries/temperate climate- Mostly small mammals/scrubs/steppes
High humidity/rainfall near equator- Abundant thick vegatation/manny species
No trees/ polar bears/ mosses- 25cm rain/few animals