Answer:
B
Explanation:
While answer C may sound correct, Answer B is makes more sense. We know you cant use High-beam lights when u cant see ongoing traffic because it could affect the other driver coming across from you. Its good to use it when legal and safe, but in that term I still don't believe there's no reason for HIGH-beamed. That's this leaves B, when you are on u lighted streets.
Answer:
false.
Explanation:
If a object is at rest it does not means that no force is acting on the object.
There can be a scenario that all to forces acting on the object balance each other and the net force required for motion is zero.
So, the given statement is false.
-- We know that the y-component of acceleration is the derivative of the
y-component of velocity.
-- We know that the y-component of velocity is the derivative of the
y-component of position.
-- We're given the y-component of position as a function of time.
So, finding the velocity and acceleration is simply a matter of differentiating
the position function ... twice.
Now, the position function may look big and ugly in the picture. But with the
exception of 't' , everything else in the formula is constants, so we don't even
need any fancy processes of differentiation. The toughest part of this is going
to be trying to write it out, given the text-formatting capabilities of the wonderful
envelope-pushing website we're working on here.
From the picture . . . . . y (t) = (1/2) (a₀ - g) t² - (a₀ / 30t₀⁴ ) t⁶
First derivative . . . y' (t) = (a₀ - g) t - 6 (a₀ / 30t₀⁴ ) t⁵ = (a₀ - g) t - (a₀ / 5t₀⁴ ) t⁵
There's your velocity . . . /\ .
Second derivative . . . y'' (t) = (a₀ - g) - 5 (a₀ / 5t₀⁴ ) t⁴ = (a₀ - g) - (a₀ /t₀⁴ ) t⁴
and there's your acceleration . . . /\ .
That's the one you're supposed to graph.
a₀ is the acceleration due to the model rocket engine thrust
combined with the mass of the model rocket
'g' is the acceleration of gravity ... 9.8 m/s² or 32.2 ft/sec²
t₀ is how long the model rocket engine burns
Pick, or look up, some reasonable figures for a₀ and t₀
and you're in business.
The big name in model rocketry is Estes. Their website will give you
all the real numbers for thrust and burn-time of their engines, if you
want to follow it that far.
Answer:
There is a dependency relationship between the refractive index of each substance and the radiation wavelength.
The refractive index in a given medium is inversely proportional to the wavelength of a color.
For example:
The rays of the red color have a wavelength greater than the rays of the blue color, therefore they have a lower refractive index and consequently a light scattering less than the blue.
Snell's law :
n₂/n₁ = v₁/v₂ = λ₁ /λ₂
*n: (refractive index)
v: (speed of light propagation)
λ: (wavelength)
Answer:
pulling a muscle. putting too much strain on a muscle causing a tear.
Explanation:
Doing warm ups help your muscles adjust to the full extent of a basketball game. Warming up is like stretching, helps your muscles adjust before going full out on the court.