1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
omeli [17]
3 years ago
10

What is the displacement from 0 to 35.5 seconds

Physics
2 answers:
denis23 [38]3 years ago
5 0

Answer:

The average velocity of the object is multiplied by the time traveled to find the displacement. The equation x = ½( v + u)t can be manipulated, as shown below, to find any one of the four values if the other three are known.

Oksanka [162]3 years ago
5 0

Answer:

12

cause the is no longer erra

You might be interested in
An electron has a kinetic energy of 3.00 ev. find its wavelength. (b) what if? a photon has energy 3.00 ev. find its wavelength.
Harman [31]
(a) The electron kinetic energy is
K=3.00 eV
which can be converted into Joule by keeping in mind that
1 eV=1.6 \cdot 10^{-19}eV
So that we find
K=3.00 eV \cdot 1.6 \cdot 10^{-19} eV/J =4.8 \cdot 10^{-19}J

The kinetic energy of the electron is related to its momentum p by:
K= \frac{p^2}{2m}
where m is the electron mass. Re-arranging the equation, we find
p= \sqrt{ 2Km}= \sqrt{ 2  ( 4.8 \cdot 10^{-19} J)(9.1 \cdot 10^{-31} kg) } =9.35 \cdot 10^{-25} kgm/s

And now we can use De Broglie's relationship to find its wavelength:
\lambda= \frac{h}{p}= \frac{6.6 \cdot 10^{-34} Js}{9.35 \cdot 10^{-25} kg m/s} =7.06 \cdot 10^{-10}m
where h is the Planck constant.


(b) By using the same procedure of part (a), we can convert the photon energy into Joules:
E=3.00 eV \cdot 1.6 \cdot 10^{-19} eV/J =4.8 \cdot 10^{-19}J

The energy of a photon is related to its frequency f by:
E=hf
where h is the Planck constant. Re-arranging the equation, we find
f= \frac{E}{h}= \frac{4.8 \cdot 10^{-19} J}{6.6 \cdot 10^{-34}Js} =7.27 \cdot 10^{14}Hz

And now we can use the relationship between frequency f, speed of light c and wavelength \lambda of a photon, to find its wavelength:
\lambda= \frac{c}{f}= \frac{3 \cdot 10^8 m/s}{7.27 \cdot 10^{14} Hz} =4.13 \cdot 10^{-7} m
8 0
3 years ago
PLEASE ASSIST 20 POINTS
adelina 88 [10]

Answer:

ride to our expected destination

7 0
3 years ago
A radio wave transmits 38.5 W/m2 of power per unit area. A flat surface of area A is perpendicular to the direction of propagati
Margaret [11]

Answer:

P=2.57\times 10^{-7}\ N/m^2

Explanation:

Given that,

A radio wave transmits 38.5 W/m² of power per unit area.

A flat surface of area A is perpendicular to the direction of propagation of the wave.

We need to find the radiation pressure on it. It is given by the formula as follows :

P=\dfrac{2I}{c}

Where

c is speed of light

Putting all the values, we get :

P=\dfrac{2\times 38.5}{3\times 10^8}\\\\=2.57\times 10^{-7}\ N/m^2

So, the radiation pressure is 2.57\times 10^{-7}\ N/m^2.

3 0
3 years ago
Students perform a set of experiments by placing a block of mass m against a spring, compressing the spring a distance x along a
Verizon [17]

Increasing the angle of inclination of the plane decreases the velocity of the block as it leaves the spring.

  • The statement that indicates how the relationship between <em>v</em> and <em>x</em> changes is;<u> As </u><u><em>x</em></u><u> increases, </u><u><em>v</em></u><u> increases, but the relationship is no longer linear and the values of </u><u><em>v</em></u><u> will be less for the same value of </u><u><em>x</em></u><u>.</u>

Reasons:

The energy given  to the block by the spring = \mathbf{0.5  \cdot k  \cdot x^2}

According to the principle of conservation of energy, we have;

On a flat plane, energy given to the block = 0.5  \cdot k  \cdot x^2 = kinetic energy of

block = 0.5  \cdot m  \cdot v^2

Therefore;

0.5·k·x² = 0.5·m·v²

Which gives;

x² ∝ v²

x ∝ v

On a plane inclined at an angle θ, we have;

The energy of the spring = \mathbf{0.5  \cdot k  \cdot x^2}

  • The force of the weight of the block on the string, F = m \cdot g  \cdot sin(\theta)

The energy given to the block = 0.5 \cdot k \cdot x^2 - m \cdot g  \cdot sin(\theta) = The kinetic energy of block as it leaves the spring = \mathbf{0.5  \cdot m  \cdot v^2}

Which gives;

0.5 \cdot k \cdot x^2 - m \cdot g  \cdot sin(\theta) = 0.5  \cdot m  \cdot v^2

Which is of the form;

a·x² - b = c·v²

a·x² + c·v² = b

Where;

a, b, and <em>c</em> are constants

The graph of the equation a·x² + c·v² = b  is an ellipse

Therefore;

  • As <em>x</em> increases, <em>v</em> increases, however, the value of <em>v</em> obtained will be lesser than the same value of <em>x</em> as when the block is on a flat plane.

<em>Please find attached a drawing related to the question obtained from a similar question online</em>

<em>The possible question options are;</em>

  • <em>As x increases, v increases, but the relationship is no longer linear and the values of v will be less for the same value of x</em>
  • <em>The relationship is no longer linear and v will be more for the same value of x</em>
  • <em>The relationship is still linear, with lesser value of v</em>
  • <em>The relationship is still linear, with higher value of v</em>
  • <em>The relationship is still linear, but vary inversely, such that as x increases, v decreases</em>

<em />

Learn more here:

brainly.com/question/9134528

6 0
2 years ago
Steel is made of atoms of iron and carbon. Would iron and carbon form metallic bonds? Explain your answer choice.
Hatshy [7]

Sample Response: "No, steel and carbon would not form metallic bonds because metallic bonds only form between metals. Iron is a metal, but carbon is not."

7 0
3 years ago
Read 2 more answers
Other questions:
  • What happens to light when it passes through a lens?
    8·2 answers
  • Can someone please help me on this!!!
    15·1 answer
  • As a positively charged object moves toward a negatively charged object, their potential energy increases. As a positively charg
    14·1 answer
  • How to find power of each resistor in a parallel circuit
    9·2 answers
  • Type the correct answer in the box.
    7·1 answer
  • Can someone help me with this, please? I have the answer but I need help with why the answer is that :(
    15·1 answer
  • Plz answer this now anyone plz
    6·1 answer
  • Which of the following best describes gravitational potential energy,
    8·1 answer
  • Which of the following quantities are unknown? initial separation of the particles final separation of the particles initial spe
    15·1 answer
  • If the splash is heard 1.07 seconds later, what was the initial speed of the rock? take the speed of sound in the air to be 343
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!