Answer:a) 34.5 N; b) 24.5 N; c) 10 N; d) 1J
Explanation: In order to solve this problem we have to used the second Newton law given by:
∑F= m*a
F-f=m*a where f is the friction force (uk*Normal), from this we have
F= m*a+f=5 Kg*2 m/s^2+0.5*5Kg*9.8 m/s^2= 34.5 N
then f=uk*N=0.5*5Kg*9.8 m/s^2= 24.5N
the net Force = (34.5-24.5)N= 10 N
Finally the work done by the net force is equal to kinetic energy change so
W=∫Force net*dr= 10 N* 0.1 m= 1J
Electromagnetic waves differ from mechanical waves in that they do not require a medium to propagate. this means that electromagnetic waves can travel not only trough air and solid materials, but also trough the vacuum of space.
Answer:
a

b

Explanation:
From the question we are told that
The mass of the rock is 
The length of the small object from the rock is 
The length of the small object from the branch 
An image representing this lever set-up is shown on the first uploaded image
Here the small object acts as a fulcrum
The force exerted by the weight of the rock is mathematically evaluated as

substituting values


So at equilibrium the sum of the moment about the fulcrum is mathematically represented as

Here
is very small so
and 
Hence

=> 
substituting values


The mechanical advantage is mathematically evaluated as

substituting values


Answer:
creo que es la a ..........
Answer:
λ = 605.80 nm
Explanation:
These double-slit experiments the equation for constructive interference is
d sin θ = m λ
where d is the distance between the slits, λ the wavelength of light and m an integer that determines the order of interference.
In this case, the distance between the slits is d = 1.11 mm = 1.11 10⁻³ m, the distance to the screen is L = 8.63 m, the range number m = 10 and ay = 4.71 cm
Let's use trigonometry to find the angle
tan θ = y / L
as the angles are very small
tan θ = sin θ / cos θ = sin θ
we substitute
sin θ = y / L
we substitute in the first equation
d y / L = m λ
λ = d y / m L
let's calculate
λ = 1.11 10⁻³ 4.71 10⁻²/ (10 8.63)
λ = 6.05805 10⁻⁷ m
let's reduce to nm
λ = 6.05805 10⁻⁷ m (10⁹ nm / 1m)
λ = 605.80 nm